From automata to RSK correspondence

«Words, Codes and Algebraic Combinatorics» Christophe Reutenauer Fest Cetraro, 4 July 2013

X G Viennot LaBRI, CNRS, Bordeaux www.xavierviennot.org

RSK

The Robinson-Shensted-Knuth correspondence

Algebraic combinatorics

Ferrers diagam or Young diagram

The Robinson-Schensted correspondence between permutations and pair of (standard) Young tableaux with the same shape

The Robinson-Shensted-Knuth correspondence RSK

related to the representation theory of finite groups symmetric group of permutations

RSK with Schensted's insertions

J ---- (P,Q) $\sigma^{-1} \longrightarrow (Q, P)$
(1972) Donald Knuth "The unusual nature of these coincidences might lead us to suspect that some sort of with craft is operating behind the scenes "

Vol 3, "The art of computer programming"

Words, codes, languages, automata,

Theoretical computer science

finite automaton

L words recognized by a finite automaton

$$w = a_1 a_2 \dots a_n$$

generating function for the number of words of length n

rational

$$\sum_{\substack{|w|=n\\w\in L}} t^n = \frac{N(t)}{D(t)}$$

«píctures» or geometric figures or combinatorial objects on a square lattice

enumeration?

«pictures» recognized by an automaton?

in relation with physics

Planar automata

«picture»

Young diagram Ferrers diagam

Def- planar automaton P - 3 finite sets . B horizontal alphabet . C vertical alphabet (state) . S planar labels (state) - O (partial) transition function $(A, B, A) \xrightarrow{\varnothing} (B', A')$ or \varnothing AES; B,B'EB; A,A'Ed planar rewriting A A A' - WE (dUB)* initial (state) - uv, ued*, vEB* final word

c(u,v;w) = number of tableaux T accepted by the automata P with initial state w and final state uv

Planar automata

example: ASM

alternating sign matrices

. ASM • . 1 . A (1) Alternating ⓓ ④ (1) sign matrices ⓓ (3) (1) A

-

3

Permutation
$$T$$

 $T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$
 $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \end{pmatrix}$
 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ + 6
permutations

1,2,7,42, 429, • • • •

1,2,7,42, (3n - 2)!n! (n+1)(n+n-1)

alternating sign matrices (ex-) conjecture Mills, Robbins, Rumsey (1982)

D. Zeilberger (1992- 1995) (+ 90 checkers) Proof of the A.S.M. conj.

alternating sign matrix

final state

A'

Α'

A'

A'

A

Α'

Α'

Α'

Α'

Α'

A'

A

Α'

A

A

A

A

Α'

Α'

Α'

Α'

final state

The RSK planar automaton

The "RSK planar automaton" B= {Bo, B1, ... Bk} wed Bo, Aoj* a = ¿Ao AA S={0, 0} A .

AD AO A, AO AO BO BO BO

Be B A: Bit A Bi レチ」

A geometric version of RSK with "light" and "shadow lines"

X.G.V., 1976

Repeat with the red points the construction of sucessives shadows

what you see is a coding of the permutation

7 8 9

J ---- (P,Q) $\sigma^{-1} \longrightarrow (Q, P)$

The RSK planar automaton

The reverse RSK planar automaton

The RSK (neverse) planar automaton

 $\mathcal{B} = \{B_0, B_1, \dots, B_k\}$ $\mathcal{A} = \{A_0, A_1, \dots, A_k\}$ WEZBO, Aog S={0, 0}?

The bilateral RSK planar automaton

bilateral planar automaton RSK B = {Biliez-{of Bi - a = {A; } j ∈ Z- toj / Aj $B_i A_j = A_j B_i$ $B_i A_i = A_{i+1} B_{i+1}$ $(i \neq 1)$ $B_1 A_1 = A_{-1} B_{-1}$ i + j

bilateral (reverse) planar automaton RSK $\begin{array}{rcl} A_i & B_i &= & B_{i+1} & A_{i+1} \\ & & (i \neq -1) \end{array}$ Aj Bi = Bi Aj i = j $A_1B_1 = B_1A_1$ Aj /

Relation planar automata and quadratic algebras the case of permutations

Heisenberg operators U, D

UD = DU + I

creation and annihilation opeators quantum mechanics normal ordering

UD = DU + I

Every word w with letters U and Dcan be written in a unique way $W = \sum_{i,j\geq 0} c_{i,j}(W)D^iU^j$ by applying a succession of substitutions $UD \rightarrow DU + I$

independant of the order of the substitutions

normal ordering

UD = DU + I

UD" = ZC. D'Ui oscisn ni normal ordering

 $C_{n,o} = n!$

K. Penson, I. Solomon R. Blasiak, A. Horrela 6. Duchamps

some quadratic algebra Q defined by generators and relations here UD=DU+1

normal ordering

combinatorial objects called Q-tableaux

here permutations, rooks placements

 $\begin{pmatrix} UD = DU + I_v I_h \\ UI_v = I_v U \\ I_h D = DI_h \\ I_h I_v = I_v I_h \end{pmatrix}$

quadratic algebra 4 generators U, D, I_v, I_h 4 relations

 $\begin{cases} \mathbf{U} \mathbf{D} \rightarrow \mathbf{D} \mathbf{U} & \mathbf{U} \mathbf{D} \rightarrow \mathbf{I}_{v} \mathbf{I}_{h} \\ \mathbf{U} \mathbf{I}_{v} \rightarrow \mathbf{I}_{v} \mathbf{U} \\ \mathbf{I}_{h} \mathbf{D} \rightarrow \mathbf{D} \mathbf{I}_{h} \\ \mathbf{I}_{h} \mathbf{I}_{v} \rightarrow \mathbf{J}_{v} \mathbf{I}_{h} \end{cases}$ new riting rules

U

 $UD = qDU + I_v I_h$ $UI_v = I_v U$ $I_h D = D I_h$ $I_h I_v = I_v I_h$

for a quadratic algebra Q we will define in the general theory the notion of Q-tableaux and complete Q-tableaux

rook placements

quadratic algebra for alternating sign matrices (ASM)

. ASM • . 1 ÷ A (1) Alternating ⓓ ④ (1) sign matrices ⓓ (3) (1) A

-

3

commutations

- $\begin{bmatrix} B A \\ B' A' \\ \end{bmatrix} = A'B' + A'B'$
- $\int \mathbf{B}' \mathbf{A} = \mathbf{A}' \mathbf{B}'$

Lemma. Any word w (A, A', B, B) com be uniquely written $\sum C(u,v;w) u(A,A') v(B,B')$ word in A,A' in B, B'

Prop. For
$$W = B^n A^n$$

 $u = A^n$, $v = B^n$
 $C(u,v;w) = the number of matrices)$
nxn ASM *(alternating sign matrices)*

The general theory The cellular Ansatz quadratic algebra Q (of a certain type) "planarisation" on a grid of the rewriting rules (I)Q-tableaux ----- planar automata

Quadratic algebra Q generators B = { B; } j = J a = { Aifier

commutation relations B; A: = $\sum_{k,l} c_{ij}^{kl} A_k B_l$ for every $j \in J$

lemma. In Q every word we (dUB)^{*} can be written in a unique way $w = \sum_{u \in a^{*}} c(u, v; w) uv$ VEB*

Bj "planar" rewriting BO

Prop For any we (aUB), a eat, ve Bt $c(\mathbf{w},\mathbf{v};\mathbf{w}) \equiv \sum p(\mathbf{T})$ complete Q-talleau (unb(T) = W (lub(T) = UV
example: permutations

 $UD = qDU + I_v I_h$ $U I_v = I_v U$ $I_h D = D I_h$ $I_h I_v = I_v I_h$

permutation as a complete Q-tableau

complete Def- Q-talleau Ferrers diagram F each cell *d* EF labeled i, keI j, les with "compatibility" condition: commutation relations B; A: = $\sum_{k,l} c_{ij}^{kl} A_k B_l$ ieI à e 2 complete edge - labeling Q-tableau T a each cell Z * &

complete Def. For T a Q- talleau uwb (T) (aUB)* upper word border lwb (T) (aUB) bower word border complete Def- weight of a Q-talleoue T $p(T) = \prod_{\substack{cells\\ deF}} c_{ij}^{kl}$

Prop For any we (aUB), a Eat, VEBT $c(\mathbf{k},\mathbf{v};\mathbf{w}) \cong \sum p(\mathbf{T})$ complete Q-talleau (uwb(T) = W(lwb(T) = uV

Bj "planar" rewriting BO

complete Q-tableaux and Q-tableaux an example

Weyl-Heisenberg algebra

 $\begin{cases} UD = qDU + I_{v}I_{k} \\ UI_{v} = I_{v}U \\ I_{k}D = DI_{k} \\ I_{k}I_{v} = I_{v}I_{k} \end{cases}$

 $w = U^{n}D^{n}$ c(u,v;w) = n! $uv = \prod_{n=1}^{n} \prod_{n=1}^{n}$

complete ~> Rermutations O- tallean $(uvb(T) = U^{n}D^{n}$ $(uvb(T) = I^{n}_{v}I^{n}_{v}$

 $\begin{cases} UD = qDU + I_v I_k \\ UI_v = I_v U \\ I_k D = DI_k \\ I_k I_v = I_v I_k \end{cases}$

permutation as a complete Q-tableau

 $\begin{cases} UD = qDU + I_v I_k \\ UI_v = I_v U \\ I_k D = DI_k \\ I_k I_v = I_v I_k \end{cases}$

permutation as a Q-tableau

$$\begin{cases} UD = qDU + I_{v}I_{k} \\ UI_{v} = I_{v}U \\ I_{e}D = DI_{e} \\ I_{e}I_{v} = I_{v}I_{e} \end{cases}$$

another Q-tableau: Rothe diagram of a permutation

definition Q-tableaux

S set of labels 9: { [k] }= R ---> S newsiting when B, A, -> ckl Ak Be such that : if $\binom{k}{i} \neq \binom{k'}{i'}$ and $\varphi\binom{k}{i} = \varphi\binom{k'}{i'}$ then $(i, j) \neq (i', j')$

Def- Q-tableau "image" by q of a "complete Q-talkan"

complete Q-talleau Q-talleau $w \in (\alpha \cup \beta)^*$ u E at VEB+

w-compatible

w fixed Eset of Q-talleaux w-compatille } 1 lijection { set of complete d-talleaux T} with unb (T) = w

equívalence Q-tableaux -- planar automaton

equivalence accepted by a Q-talleaux Q quadratic algebra planar automaton $\mathcal{P}_{=}(S, \mathcal{B}, \mathcal{A}, \mathcal{B}, \mathbf{w}, \mathbf{uv})$ with P satisfying $\Theta(\Lambda, \mathcal{B}, A) = \Theta(\mathcal{E}, \mathcal{B}, A)$ A=t

A'B' BA = > $(B', A') = \Theta(\Lambda, B, A)$ AES

«Píctures» accepted by planar automata ?

permutation talleau A. Pastnikov (2001, ...) E. Steingrimsson, L. Williams (2005)

Bjections between pattern-avoiding fillings of Young diagrams

Josuat-Verges (2008) I ... X- diagrams

a tiling on the square lattice

The 8-vertex algebra (or XYZ - algebra) (or Z-algebra)

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $\begin{cases} BA = 900 AB + t_{00} A.B. \\ B.A. = 900 A.B. + t_{00} A.B. \\ B.A = 900 A.B. + t_{00} A.B. \\ B.A = 900 A.B. + t_{00} A.B. \\ BA. = 900 A.B. + t_{00} A.B. \\ BA. = 900 A.B. + t_{00} A.B. \\ \end{array}$

The quadratic algebra Z 4 generators B. A. BA 8 parameters g..., t... (BA = 900 AB + 500 A.B. $\begin{cases} B_{\bullet}A_{\bullet} = q_{\bullet \bullet} A_{\bullet}B_{\bullet} + c_{\bullet \bullet} A_{\bullet}B \\ B_{\bullet}A = q_{\bullet \bullet} A_{\bullet}B_{\bullet} + O_{\bullet}A_{\bullet}B \\ B_{\bullet}A_{\bullet} = q_{\bullet \bullet} A_{\bullet}B_{\bullet} + O_{\bullet}A_{\bullet}B \\ B_{\bullet}A_{\bullet} = q_{\bullet \bullet} A_{\bullet}B_{\bullet} + O_{\bullet}A_{\bullet}B_{\bullet} \end{cases}$

$$w = \mathbb{B}^{n} \mathbb{A}^{n}$$
 $uv = \mathbb{A}^{n} \mathbb{B}^{n}$
 $\varepsilon(u, v; w) = nb = \mathcal{A} \mathbb{A} \mathbb{S} \mathbb{M}$ nxn

rhombus tilings

 $\begin{cases}
 5 & t_{00} = t_{00} = 0 \\
 9 & t_{00} = 0
 \end{cases}$ (ASM)

Rhombus tilings

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $\begin{cases} B A = q_{00} A B + t_{00} A, B, \\ B, A = O A, B + t_{00} A, B + t_{00} A, B, \\ B, A = q_{00} A, B + t_{00} A, B \\ B, A = q_{00} A, B + O A, B + O A, B, \end{cases}$

 $\begin{array}{c}
i+j+k-1 \\
i+j+k-2 \\
i+j+k-2 \\
i + j \leq k \\
j \leq k \leq c
\end{array}$

dímers tiling on a square lattice

a tiling on the square lattice
The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $\begin{cases} \mathbb{B} A = q_{00} A B + t_{00} A B, \\ \mathbb{B} A = Q_{00} A B + Q_{00} A, \\ \mathbb{B} A = Q_{00} A B, + Q A B, \\ \mathbb{B} A = q_{00} A B, + Q A, \\ \mathbb{B} A = q_{00} A B, + Q A, \\ \mathbb{B} A = q_{00} A, \\ \mathbb{B} A = q_$

Aztec tilings

Aztec tilings $t_{00} = t_{00} = 0$ (ASM) $t_{00} = 2$ (Nb of -1) in (ASM)

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t. $\begin{cases} B A = 9_{00} A B + \frac{1}{00} A, B, \\ B A = 9_{00} A, B + 2 A B \\ B A = 9_{00} A B + 0 A, B \\ B A = 9_{00} A, B + 0 A, B \\ B A = 9_{00} A, B + 0 A, B, \end{cases}$

geometric interpretations of Z- tableaux В. A. $\langle \langle \rangle$ A B

non-intersecting paths

example: binomial determinant

I.Gessel, X.G.V., 1985

 $\int_{q_{00}}^{t_{00}} \int_{q_{00}}^{t_{00}} = \int_{q_{00}}^{t_{00}} = 0$

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $\begin{cases} BA = q_{00} AB + OA, B, \\ B, A = OA, B, + OA, B, \\ B, A = q_{00} AB, + OA, B, \\ B, A = q_{00} AB, + t_{00} A, B, \\ BA = q_{00} AB, + t_{00} AB, \\ AB = q_{00} AB, + t_{00} AB, + t_{00} AB, \\ AB = q_{00} AB, + t_{00} AB, + t_{00} AB, + t_{00} AB, \\ AB = q_{00} AB, + t_{00} AB, + t_$

intersecting paths non too = too = 0 (MASM) (esc. paths)

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $BA = q_{00} AB + t_{00} A.B.$ $B_{\bullet}A_{\bullet} = \bigcap A_{\bullet}B_{\bullet} + C_{\bullet}A_{\bullet}B$ B.A = 9.0 A B. + O A. B $[BA] = q_0, A B + O A B.$

FPL fully packed loops

random FPL

The quadratic algebra Z 4 generators B. A. BA 8 parameters g..., t... $\begin{cases} BA = OAB + t_{00} A.B. \\ BA = OAB + t_{00} A.B. \\ BA = OAB + t_{00} A.B. \\ BA = q_{00} AB + t_{00} A.B. \\ BA = q_{00} A.B + t_{00} A.B. \end{cases}$

XYZ-tableaux

or B.A.BA configurations

.

Prop. The number of configuration B.A. BA on nxn is $2^{(n^2)}$

alternating sign matrix

alternating sign matrix

Razumov - Stroganov (ex) - conjecture

alternating sign matrices

XXZ spin chains model

FPL fully packed loops

proof by : L. Cantini and A.Sportiello (March 2010) arXiv: 1003.3376 [math.CO] based on «Wieland rotation» completely combinatorial proof correlations functions in XXZ spin chains

Exact results for the σ^z two-point function of the XXZ chain at $\Delta = 1/2$

N. Kitanine¹, J. M. Maillet², N. A. Slavnov³, V. Terras⁴

Abstract

We propose a new multiple integral representation for the correlation function $\langle \sigma_1^z \sigma_{m+1}^z \rangle$ of the XXZ spin- $\frac{1}{2}$ Heisenberg chain in the disordered regime. We show that for $\Delta = 1/2$ the integrals can be separated and computed exactly. As an example we give the explicit results up to the lattice distance m = 8. It turns out that the answer is given as integer numbers divided by $2^{(m+1)^2}$.

¹LPTM, UMR 8089 du CNRS, Université de Cergy-Pontoise, France, kitanine@ptm.u-cergy.fr

 $^{^2 {\}rm Laboratoire}$ de Physique, UMR 5672 du CNRS, ENS Lyon, France, maillet@ens-lyon.fr

 $^{^3\}mathrm{Steklov}$ Mathematical Institute, Moscow, Russia, nslavnov@mi.ras.ru

⁴LPTA, UMR 5207 du CNRS, Montpellier, France, terras@lpta.univ-montp2.fr

 e^{2z_j} , it reduces to the derivatives of order m-1 with respect to each x_j at $x_1 = \cdots = x_n = e^{\frac{\pi}{3}}$ and $x_{n+1} = \cdots = x_m = e^{-\frac{i\pi}{3}}$. If the lattice distance m is not too large, the representations (9), (11) can be successfully used to compute $\langle Q_{\kappa}(m) \rangle$ explicitly. As an example we give below the list of results for $P_m(\kappa) = 2^{m^2} \langle Q_{\kappa}(m) \rangle$ up to m = 9: intergers ?

 $P_1(\kappa) = 1 + \kappa$, positivity ? $P_2(\kappa) = 2 + 12\kappa + 2\kappa^2,$ $P_3(\kappa) = 7 + 249\kappa + 249\kappa^2 + 7\kappa^3,$ $P_4(\kappa) = 42 + 10004\kappa + 45444\kappa^2 + 10004\kappa^3 + 42\kappa^4,$ $P_5(\kappa) = 429 + 738174\kappa + 16038613\kappa^2 + 16038613\kappa^3 + 738174\kappa^4 + 429\kappa^5,$ $P_6(\kappa) = 7436 + 96289380\kappa + 11424474588\kappa^2 + 45677933928\kappa^3 + 11424474588\kappa^4$ $+96289380\kappa^{5}+7436\kappa^{6},$ $P_7(\kappa) = 218348 + 21798199390\kappa + 15663567546585\kappa^2 + 265789610746333\kappa^3$ (12) $+265789610746333\kappa^{4} + 15663567546585\kappa^{5} + 21798199390\kappa^{6} + 218348\kappa^{7},$ $P_8(\kappa) = 10850216 + 8485108350684\kappa + 39461894378292782\kappa^2$ $+ 3224112384882251896 \kappa^3 + 11919578544950060460 \kappa^4 + 3224112384882251896 \kappa^5$ $+39461894378292782\kappa^{6}+8485108350684\kappa^{7}+10850216\kappa^{8}$ $P_9(\kappa) = 911835460 + 5649499685353257\kappa + 177662495637443158524\kappa^2$ $+77990624578576910368767\kappa^3+1130757526890914223990168\kappa^4$

 e^{2z_j} , it reduces to the derivatives of order m-1 with respect to each x_i at $x_1 = \cdots = x_n = e^{\frac{m}{3}}$ and $x_{n+1} = \cdots = x_m = e^{-\frac{i\pi}{3}}$. If the lattice distance m is not too large, the representations (9), (11) can be successfully used to compute $\langle Q_{\kappa}(m) \rangle$ explicitly. As an example we give below the list of results for $P_m(\kappa) = 2^{m^2} \langle Q_\kappa(m) \rangle$ up to m = 9: intergers ? $P_1(\kappa) = 1 + \kappa,$ **FPL** positivity ? $\mathbf{ASM} \quad P_2(\kappa) = 2 + 12\kappa + 2\beta^2,$ combinatorial interpretation $P_3(\kappa) = 7 + 249\kappa + 249\kappa^2 - 7\kappa^3,$ $P_4(\kappa) = 42 + 10004\kappa + 45444\kappa^2 + 10004\kappa^3 + 42\kappa^4,$ $P_5(\kappa) = 429 + 738174\kappa + 16038613\kappa^2 + 16038613\kappa^3 + 738174\kappa^4 + 429\mu^5,$ $P_6(\kappa) = 7436 + 96289380\kappa + 11424474588\kappa^2 + 45677933928\kappa^3 + 11424474588\kappa^4$

 $+96289380\kappa^{5} + 7436\kappa^{6},$ $P_{7}(\kappa) = 218348 + 21798199390\kappa + 15663567546585\kappa^{2} + 265789610746333\kappa^{3}$ $+265789610746333\kappa^{4} + 1556356756585\kappa^{5} + 21798199390\kappa^{6} + 218348\kappa^{7},$

 $P_{8}(\kappa) = 10850216 + 8485108350784\kappa + 39461894378292782\kappa^{2} + 3224112384882251896\kappa^{3} + 41010578544950060460\kappa^{4} + 3224112384882251896\kappa^{5}$

 $+39461894378292782\kappa^{6}+8485108350684\kappa^{7}+\underline{10850216}\kappa^{8}$

 $P_9(\kappa) = 911835460 + 5649499685353257\kappa + 177662495637443158524\kappa^2$

 $+77990624578576910368767\kappa^3+1130757526890914223990168\kappa^4$

(12)

8 - vertex model XYZ- spín chaíns model

analog of Razumov - Stroganov conjecture

 2^{n^2}

The cellular Ansatz quadratic algebra Q (of a certain type) (I) "planarisation" on a grid of the rewriting rules Q-tableaux planar automata

"The cellular Ans	atz"		
	combinatorial		
Physics	objects		
J	on a 2d lattice	4 • • •	
"normal ordering"		bijection	IS
UD = DU + Id	rooks placements	RSK	
Weyl-Heisenberg	permutations	\longleftrightarrow	pairs of Tableaux Young

quadratic algebra Q

commutations rewriting rules

planarization

Q-tableaux

the XYZ algebra ASM, (alternating sign matrices) FPL (Fully packed loops) tilings, non-crossing paths

planar automata RSK automata

The cellular Ansatz quadratic algebra Q (of a certain type) (1) "planarisation" on a grid of the rewriting rules planar automata Q-tableaux (2) "planarization" on a grid of the bijection constructed from a representation of the algebra Q
The cellular Ansatz second part: UD = DU+1 guided construction of a bijection from a representation of U and D acting on Ferrers diagrams

Sergey Fomin

Operators U and D

adding or deleting a cell in a Ferrers diagram

Young lattice

U and D are operators acting of the vector space generated by Ferrers diagrams

UD = DU + I

$\overline{UD} = \overline{DU} + \overline{I}$

T

T

propagation of the diagrams bijection related to one cell

"local" algorithm on a grid or "growth diagrams"

Sergey Fomin

initial state during the labeling process

final state

 $w = 1 \ 2 \ 3 \ 1 \ 2$

Yamanuchi word

equivalence with the RSK automaton

T

U and D are operators acting of the vector space generated by Ferrers diagrams

The cellular Ansatz quadratic algebra Q (of a certain type) (1) "planarisation" on a grid of the rewriting rules Q-tableaux planar automata

(2) from the representation of the algebra Q construction of a bijection by «propagation» on a grid of the commutation diagrams bijection related to each cell

The PASEP algebra

 $\mathcal{D}E = qE \mathcal{D} + E + \mathcal{D}$

$\mathcal{DE} = \mathcal{QE} \rightarrow \mathcal{E} \rightarrow \mathcal{D}$ The Matrix Ansatz Derrida, Evans, Hakim, Pasquier 1993

Combinatorics of the PASEP

TASEP

Brak, Essam (2003), Duchi, Schaeffer, (2004), Angel (2005), XGV, (2007)

(P) ASEP

Brak, Corteel, Essam, Parviainen, Rechnitzer (2006) Corteel, Williams (2006) (2008) (2009) XGV, (2008) Corteel, Stanton, Stanley, Williams (2010)

Derrida, ... Mallick, Golinelli, Mallick (2006)

 $\mathcal{D} \mathcal{E} = q \mathcal{E} \mathcal{D} + \mathcal{E} I_{k} + I_{v} \mathcal{D}$ $\mathcal{D} I_{v} = I_{v} \mathcal{D}$ ILE = EIL IgIv = IVIg

alternative tableau

 $\mathcal{D}E = qE \mathcal{D} + E + \mathcal{D}$

 $\mathcal{D}E = qE\mathcal{D} + E + \mathcal{D}$

stationary probabilities $E \rightarrow 1/\alpha$ $D \rightarrow 1/\beta$

The Matrix Ansatz Derrida, Evans, Hakim, Pasquier 1993

for the PASEP algebra

DE=qED+E+D

representation with operators related to the combinatorial theory of orthogonal polynomials and data structures in computer science

Primitive operations for "dictionnaries" data structure: add or delete any elements, asking questions (with positive or negative answer)

Combinatorial theory of (formal) orthogonal polynomials

n! moments of laguerre polynomials

bijection permutations --- Laguerre histories (certain weighted paths)

Combinatorial theory of (formal) orthogonal polynomials

n! moments of laguerre polynomials

bijection permutations --- Laguerre histories (certain weighted paths)

bijection alternative tableaux --- Laguerre histories

"exchangefusion" algorithm

stationary probabilities for the PASEP, q-Laguerre

other Q-tableaux:

permutation tableaux tree-like tableaux staircase tableaux TASEP q=0DE=E+DCatalan alternative tableauxbijection with binary trees

relation with the Loday-Ronco Hopf algebra on binary trees

Claudía-Christophe Hopf algebra on permutations

analog for ASM ?

"The cellular Ans	tz" combinatorial	representation by operators	
Physics Of "normal ordering"	on a 2d lattice	oijections	data structures "histories" orthogonal
UD = DU + Id	rooks placements	RSK	polynomials
Weyl-Heisenberg DE = qED + E + D PASEP	$\begin{array}{ccc} \text{permutations} & \longleftrightarrow & \text{pairs of} \\ \text{alternative tableaux} & \longleftarrow & \text{permutations} \\ \text{tree-like tableaux} & & \text{Lage} \end{array}$		f Tableaux Young mutations guerre histories
dynamical systems in physics stationary probabilities	reverse Q-tableaux	<u>í</u>	
quadratic algebra Q	Q-tableaux the XYZ algebra	atricos)	
commutations rewriting rules	FPL (Fully packed loops) tilings, non-crossing paths		
planarization	planar automata	K automata erse planar	

automata

The cellular Ansatz quadratic algebra Q (of a certain type) (1) "planarization" on a grid of the rewriting rules planar automata Q-tableaux (2) "planarization" on a grid of the bijection constructed from the representation of the algebra Q (3)how to guess a representation: demultiplication of the commutation relations

«demultiplication» of the commutation relations in a quadratic algebra Q

 $\mathbf{U} \mathbf{D} = \mathbf{D} \mathbf{U} + \mathbf{Y} \mathbf{X}$

Х

ЭЙР УЙР $\begin{cases} U \mathcal{P} = \mathcal{D}U + \dot{\mathbf{y}} \dot{\mathbf{x}} \\ U \mathcal{Y} = \mathcal{Y}U \\ X U = U X \\ X \mathcal{Y} = (\dot{\mathcal{Y}} \dot{\mathbf{x}})^{T} \end{cases}$ of the commutation relations defining the algebra Q

ЭЙР УЙР $\begin{cases} U \mathcal{P} = \mathcal{D}U + \dot{Y} \dot{X} \\ U \dot{Y} = \dot{Y} U \\ X \dot{U} = U X \\ X \dot{Y} = (\dot{Y} \dot{X})^{2} \end{cases}$ of the commutation relations defining the algebra Q

 $U\mathcal{D} = \mathcal{D}U + \mathcal{Y}_{1} \times_{1^{-1}}$ $X_{A}Y_{A} = Y_{A}X_{A}$

ЭЙР УЙР $\begin{cases} U \mathcal{P} = \mathcal{D}U + \dot{\mathbf{y}} \dot{\mathbf{x}} \\ U \dot{\mathbf{y}} = \dot{\mathbf{y}} U \\ X \dot{\mathbf{y}} = \dot{\mathbf{y}} \dot{\mathbf{x}} \\ X \dot{\mathbf{y}} = (\dot{\mathbf{y}} \dot{\mathbf{x}})^{T} \end{cases}$ of the commutation relations defining the algebra Q

 $U\mathcal{D} = \mathcal{D}U + \frac{1}{4} \times \frac{1}{4}$ $X_{A}Y_{A} = Y_{A}X_{A}$ X2 Y2 = Y3 X3

ЭЙР УЙР $(\mathbf{U}\mathcal{P} = \mathcal{D}\mathbf{U} + \mathbf{Y}\mathbf{X})$ $\begin{cases} \mathbf{U} \mathbf{Y} = \mathbf{Y} \mathbf{U} \\ \mathbf{X} \mathbf{U} = \mathbf{U} \mathbf{X} \\ \mathbf{X} \mathbf{Y} = \{ \mathbf{\hat{Y}} \mathbf{\hat{X}} \} \end{cases}$ "duplication" of the commutation relations defining the algebra Q

 $U\mathcal{D} = \mathcal{D}U + \frac{1}{4} \times \frac{1}{4}$ $X_{A}Y_{A} = Y_{A}X_{A}$ $X_2 Y_2 = Y_3 X_3$ X: Y: = Yin Xin

U Y: = Y: U XjU = U Xj

we get back

the RSK planar automaton

Bċ A. Bi

 $= \mathbf{B}_{0} \qquad \left\{ \begin{array}{l} \mathcal{P} = \mathbf{A}_{0} \\ \mathcal{P} = \mathbf{B}_{1} \\ \mathcal{P} = \mathbf{A}_{1} \\ \mathcal{P} = \mathbf{A}_{1} \end{array} \right\}$ 121

У <mark>У</mark> Р $\begin{cases} U \mathcal{P} = \mathcal{D}U + \dot{Y} \dot{X} \\ U \dot{Y} = \dot{Y} U \\ X \dot{U} = U X \\ X \dot{Y} = (\dot{Y} \dot{X}) \end{cases}$ D

another demultiplication of the algebra UD=DU+Id

 $\begin{cases} U \mathcal{P} = \mathcal{D}U + \dot{Y} \dot{X} \\ U \dot{Y} = \dot{Y} \dot{U} \\ X \dot{U} = U \dot{X} \\ X \dot{Y} = (\dot{Y} \dot{X}) \end{cases} \qquad \text{onother duplication"} \\ \text{of the commutation} \\ \text{relations of the algebra} \end{cases}$

゙∪⊅ = ⊅∪ +%× $\begin{cases} \times Y_{0} = Y_{4} \times \\ \times Y_{4} = Y_{2} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{1} = Y_{1} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{1} = Y_{2} \times \\ \times Y_{2} = Y_{3} \times \\ \times Y_{3} = Y_{3} \times \\ \times$

 $\mathbf{U}\mathcal{D} = \mathcal{D}\mathbf{U} + \mathbf{X}\mathbf{X}$ $\begin{array}{l} \times \ \gamma_{0} \ = \ \gamma_{4} \times \\ \times \ \gamma_{4} \ = \ \gamma_{2} \times \\ \times \ \gamma_{2} \ = \ \gamma_{3} \times \end{array}$ × Y: Yix X

XU_UX $\cup Y_{i} = Y_{i} \cup$

lijections tation a inversion table envolution ~ "Hermite no fixed points "Hermite histories" envolution ~ towers closed fixed points placement

demultiplication in the XYZ algebra and the ASM algebra

- $\begin{bmatrix} B A \\ B' A' \\ \end{bmatrix} = A'B' + A'B'$
- $\int \mathbf{B}' \mathbf{A} = \mathbf{A}' \mathbf{B}'$

+ A' B' [BA 1B . 2 B' A' $\begin{bmatrix} B'A' = A'B' + (\\ \begin{bmatrix} B'A = AB' \\ BA' = A'B \end{bmatrix}$ A

+ A' B' AB 1 A'B' +A $\begin{cases} B'A = AB' \\ BA' = A'B \end{cases}$

+ A' B' BA B' A' A'B' +(A) $\begin{cases} B'A = AB' \\ BA' = A'B \end{cases}$

+ A' B' BA B' A' A'B' +(A) $\begin{cases} B'A = AB' \\ BA' = A'B \end{cases}$

The quadratic algebra Z 4 generators B. A. BA 8 parameters 9...., t... $\begin{cases} BA = 900 AB + t_{00} A.B. \\ B.A. = 900 A.B. + t_{00} A.B. \\ B.A = 900 A.B. + t_{00} A.B. \\ B.A = 900 A.B. + t_{00} A.B. \\ BA. = 900 A.B. + t_{00} A.B. \\ BA. = 900 A.B. + t_{00} A.B. \\ \end{array}$

more problems ...

· for c(u, v; w) ? determinant? Q

• or at least efficient procedure for computing c(u,v;w) ?

• generating function ?

conclusion

· Q-talleaux quadratic algebra leaux Combinatorial 00 lattice on 2 ta

"The cellular Ans	satz"			
Physics	combinatorial objects on a 2d lattice			
"normal ordering" UD = DU + Id Weyl-Heisenberg DF = aFD + F + D	rooks placements permutations alternative tableaux			
PASEP dynamical systems in physics stationary probabilities				
quadratic algebra Q	Q-tableaux the XYZ algebra ASM, (alternating sign matrices)			
commutations rewriting rules	FPL (Fully packed loops) tilings, non-crossing paths RSK aut			
planarization	planar automata			

RSK automata

"The cellular Ans	satz" combinator	ial by o	representation by operators		
Physics	on a 2d latt	tice bijections	data structures "histories"		
UD = DU + Id	rooks placem	ents RSK	polynomials		
Weyl-Heisenberg DE = qED + E + D PASEP	permutation alternative ta tree-like ta	ons \longleftrightarrow pa bleaux \longleftrightarrow bleaux	airs of Tableaux Young permutations Laguerre histories		
dynamical systems in physics stationary probabilities	reverse Q-t	ableaux			
quadratic algebra Q	Q-table the XYZ	eaux algebra			
commutations rewriting rules	ASM, (alternating FPL (Fully pac tilings, non-cro				
planarization	planar	reverse planar automata			

automata

"The cellular Ans	atz" combinatorial	representation by operators		
Physics	on a 2d lattice	bijections	data structures "histories"	
UD = DU + Id	rooks placements	RSK	polynomials	
Weyl-Heisenberg DE = qED + E + D PASEP	permutations alternative tablea tree-like tableaux	$\begin{array}{c} & & \\ & & \\ & & \\ ux & & \\ & $	of Tableaux Young rmutations guerre histories	
dynamical systems in physics stationary probabilities	reverse Q-tableau	IX		
quadratic algebra Q	Q-tableaux the XYZ algebr	a dem	demultiplication of equations	
commutations rewriting rules	ASM, (alternating sign r FPL (Fully packed le tilings, non-crossing	natrices) 111 pops) paths	algebra Q	
	1	RSK automata	.	
planarization	planar re automata	verse planar automata B	ABA - pair (P,Q)	

-

website Xavier Viennot

main website <u>www.xavierviennot.org</u>

secondary website: Courses cours.xavierviennot.org - course IIT Bombay 2013 (20 hours)

Planar automata

examples

example 1

one point in each column at least one point in each row

nombres de Genocchi

G_{2n} = 2(2-1) B_{2n} Bernoulli 2°G20+2 = (n+1) T20+1

Angelo Genocchi 1817 - 1889

					125		
Hine igitur	calculo	institute	reper	i	A	A	
A =	1.			antife	11	N A B	
B 💳	I	(4)			YER		
C =	3				MAN N		
D =	17				der.	12	(Co
$\mathbf{E} =$	155		5.31		14-	S	1991
$\mathbf{F} \rightleftharpoons$	2073	= 6	91.3				-
G =	38227	= 7	.5461	=	$7 \cdot \frac{12}{-}$	7.129	2
H =	929569	= 30	517.25	7		э.	
I_=	2882061	$9 = \frac{1}{4}$	3867.9.	73	&c.	*	a -

 $C(Y^{n}, X^{2n}; (D^{2}E)^{n}) = G_{en+2}$ u v w

example 2

example - directed animal PE × Y **×**•*ε*

TDE DY XE XY OED $\begin{array}{ccc}
\mathcal{D} & & & & \\ & & & \\ \times & & & \\ & & & \\ \times & & & \\ \end{array} \xrightarrow{} \\ & & & \\ & & \\ \end{array} \xrightarrow{} \\ & & \\ \end{array} \xrightarrow{} \\ & & \\ \end{array} \xrightarrow{} \\ \end{array}$ DE D EF D ED

The directed animals algebra

example - directed animal $\frac{P}{\varepsilon} \times \frac{Y}{\gamma}$ ● □ × ●

 $\begin{cases} \mathcal{D}\mathcal{E} = & \mathcal{D}\mathcal{E}\mathcal{D} \\ \mathcal{D}\mathcal{Y} = \mathbb{P}\mathcal{Y}\mathcal{D} + \mathcal{D}\mathcal{E}\mathcal{D} \\ \times \mathcal{E} = \mathbb{P}\mathcal{E}\mathcal{X} + \mathcal{D}\mathcal{E}\mathcal{D} \\ \times \mathcal{Y} = \mathbb{P}\mathcal{Y}\mathcal{X} + \mathcal{D}\mathcal{E}\mathcal{D} \end{cases}$

quadratic and rewriting systems

example - directed animal $\frac{P}{\varepsilon} \times \frac{Y}{\gamma}$

 $\begin{cases} \mathcal{D}\mathcal{E} = & \Box\mathcal{E}\mathcal{D} \\ \mathcal{D}\mathcal{Y} = \mathcal{P}\mathcal{P} + \mathcal{D}\mathcal{E}\mathcal{D} \\ \times\mathcal{E} = \mathcal{D}\mathcal{E} \times + \mathcal{D}\mathcal{E}\mathcal{D} \\ \times\mathcal{V} = \mathcal{P}\mathcal{V} \times + \mathcal{D}\mathcal{E}\mathcal{D} \end{cases}$

