The beauty of mathematics

part II: trees, Catalan numbers, bíjections

Pope John Paul II College of Education Pondicherry, 23 Feb 2012

Xavier Viennot CNRS, Bordeaux, France

§4 Catalan numbers

Another beautiful formula

From trees in nature

to "mathematical trees"

binary tree

Cn = nombre d'arbres binaires ayant n sommets internes (et donc n+1 feuilles) nombre de Catalan

number of binary trees having n internal vertices (or n+1) leaves (external vertices)

addition 2 3 3 641 4 10 10 5 1 S 15 20 15 6 1 6 35 35 21 7 1 7 21 28 56 70 56 28 8 1 8

 $2(2n+1)C_n = (n+2)C_{n+1}$

addition ۰.

\$5 bijections

(one-to-one correspondences)

bijection

or one-to-one correspondence

binary trees with n internal vertices Dyck paths length 2n

bijection (one-to-one correspondance)

binary with n (internal) vertices

Dyck paths length 2n

prefix order

bijection

triangulations

binary trees

fill in she to and 8 the fill the start of the setting the Arman haid and Judge led wind they are by c and c a find n'-3 Diagonales in n-2 Grangula georgenes his bailanding hopping and taken filiged got for have. Auguit in les nombres de Catalan Jam. n = 1,2,5,14,42,132,429,1430, 6 14. 42, 152; 429, Firmer fabri of In fifty por marft. In generaliter 22. (An-10) 2.6.10.14. $X = \frac{1}{2 \cdot 3} \cdot A \cdot 5 \cdot 6 \cdot 7 \cdot (n-1)$ 二部学,14=5.学, 10 & hill galing $C_{n} = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}^{k_{n}} \frac{1}{2^{k_{n}}} \begin{pmatrix} n \\ n \end{pmatrix}^{k_{n}} \frac$

Euler introduit les séries génératrices! 1-2a-11-42 1+ 2a+5a+14a+42a+132a+ etc 5 a + 14 a 2 + 42 a 4 192 a + et = 1-2a - V(1-9a) all . com a = + 1 1 + + + + + + + + + + + + + = All to many lefter al for the first a = Andret même les prémisses offer de la "combinatoire analytique" Vor. Joshofly forman 4 Sept 1751 Berlin