Trees in various sciences

IISER, Pune 17 February 2015

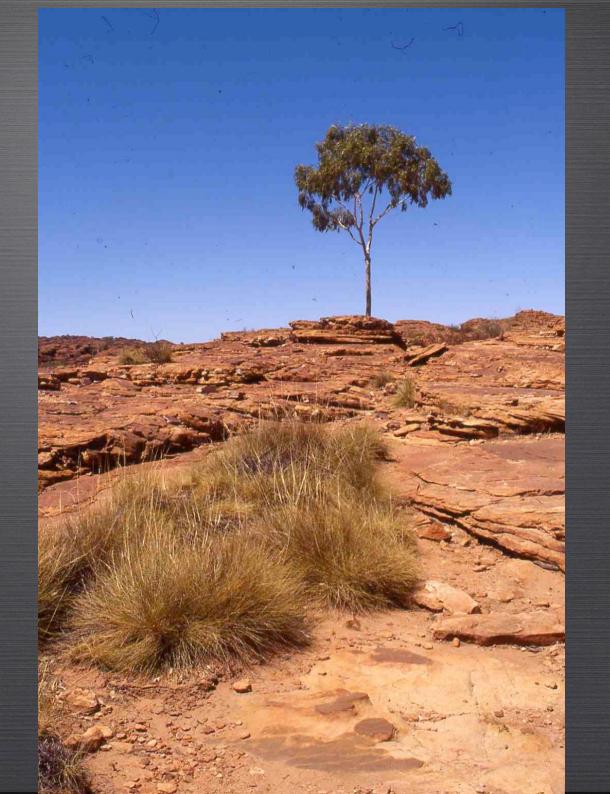
Xavier Viennot CNRS, LaBRI, Bordeaux France

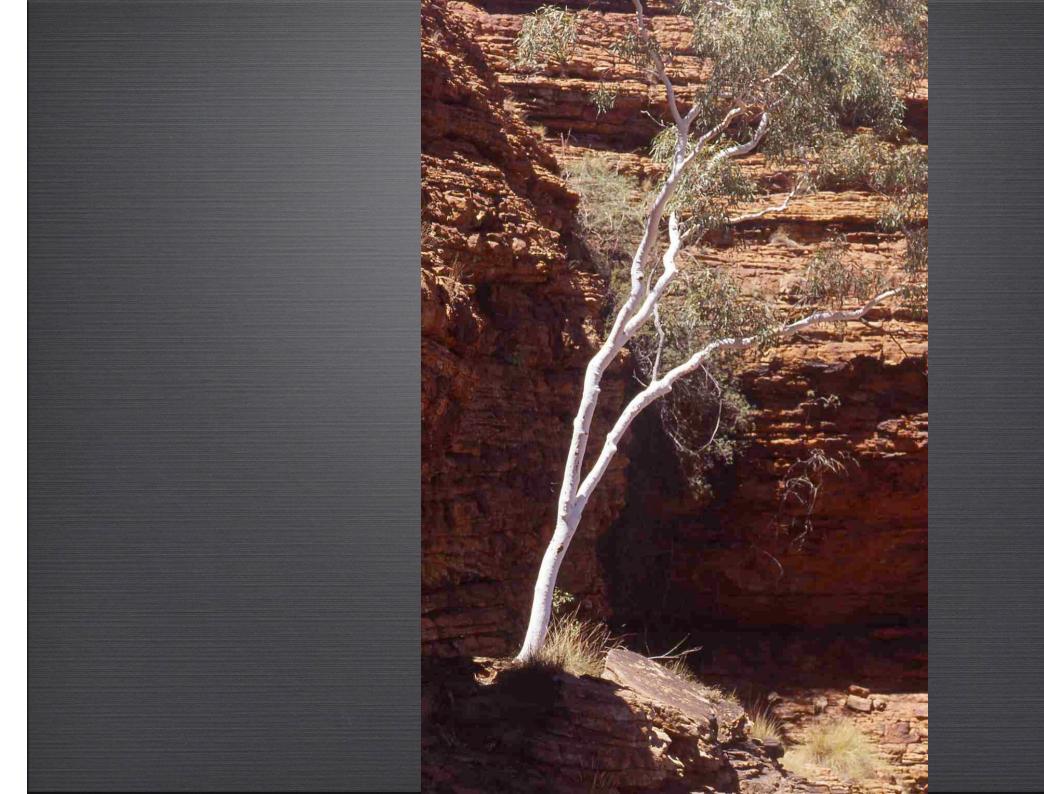
The mathematical beauty of trees

The renaissance of combinatorics and visual mathematics

From classical physics to quantum gravity

Trees in nature ... trees everywhere





CORAL

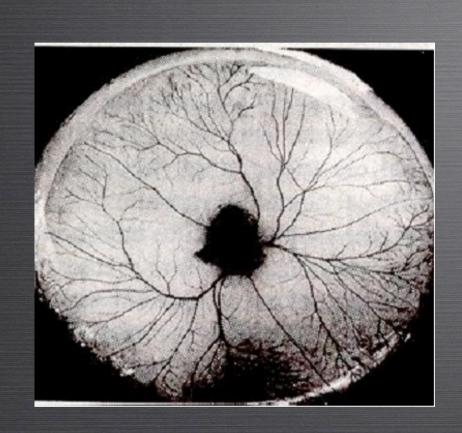
ELECTRICAL DISCHARGE

ELECTROLYSIS DEPOSITS

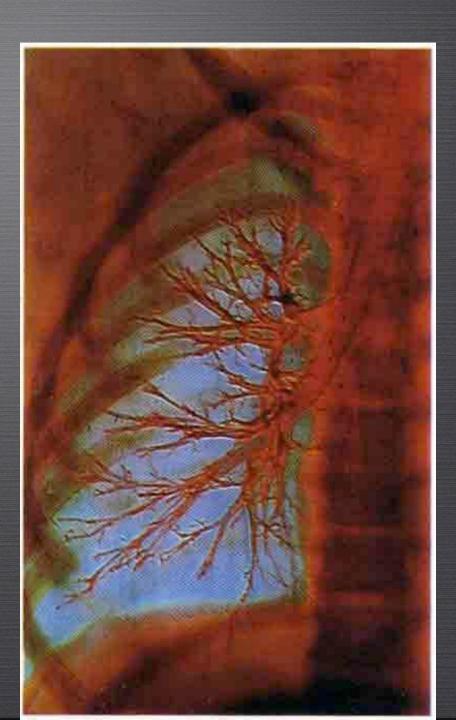
VINCENT FLEURY

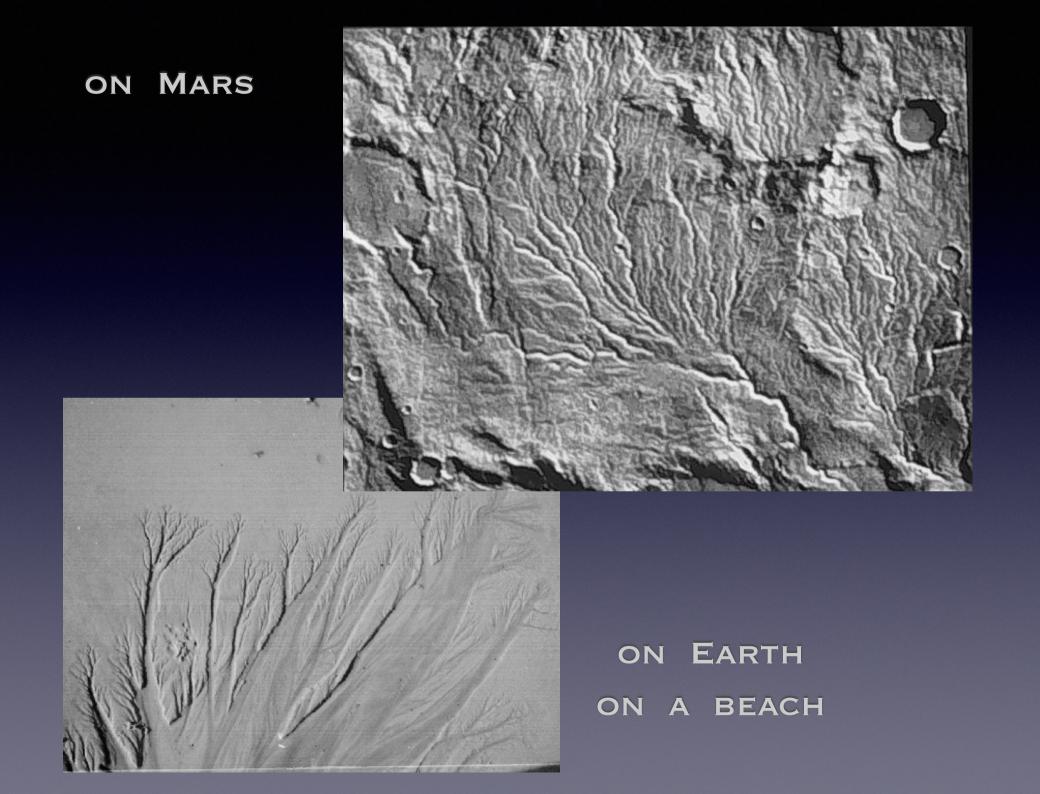
VISCOUS FINGERING

INJECTING OIL BETWEEN TWO PLATES



EGG





TREES BRANCHING STRUCTURES EVERYWHERE

THE TREE OF KNOWLEDGE

IIT BOMBAY, POWAI, MUMBAI

Trees in the stars,

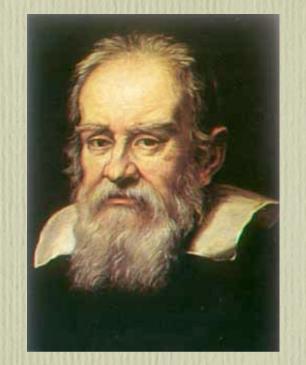
trees in the particles of light ...

Trees in the stars ?

The infinitely large ..

The stars, the planets, the galaxies, the universe, its birth and history, space, time, mater, ...

understanding the universe with mathematics



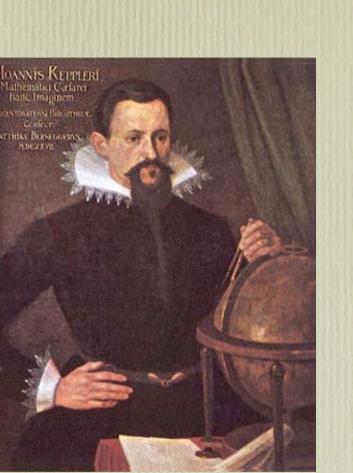
Galileo Galilei 1564-1642

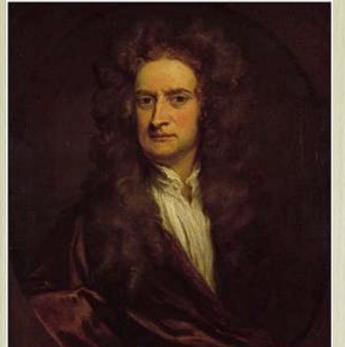
classical geometry

Johannes Kepler 1571 - 1630

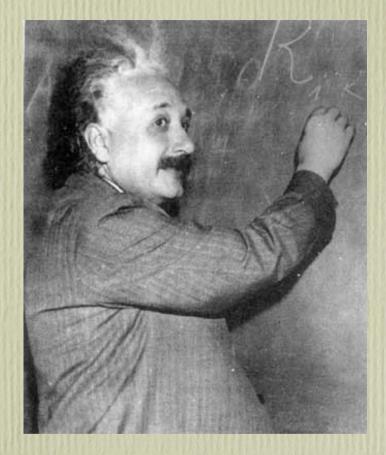
classical mechanics

euclidian geometry





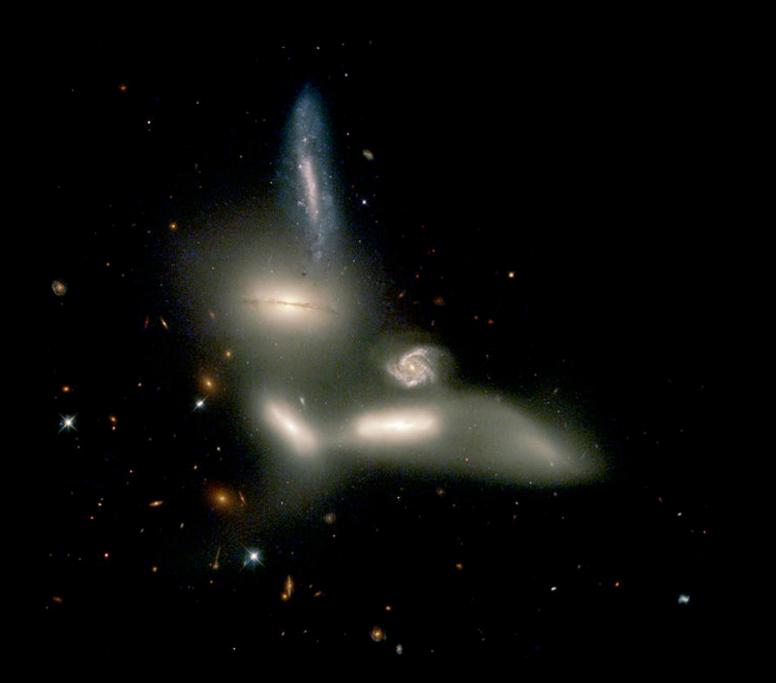
Isaac Newton 1643-1727



Relativity theory restricted general

gravitation

Albert Einstein 1879-1955



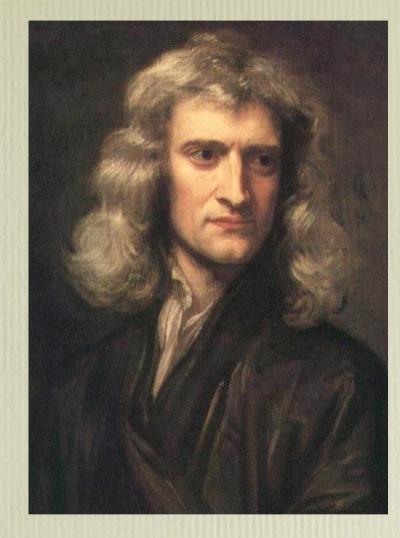
Trees in the particules of light ?

collégiale Notre-Dame Vernon

The infinity small ...

the atoms, the electrons the particles of mater, of light, the photons,

Christian Huygens 1629-1695

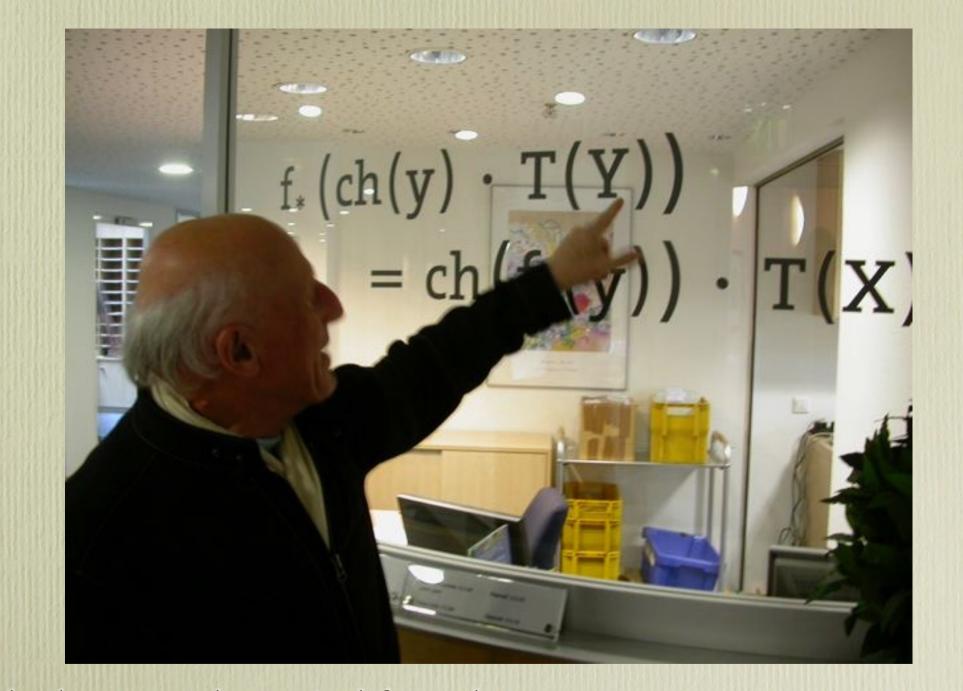


Isaac Newton 1643-1727

the light:

vibration ? or particles of mater?

If you are lost in the forest of mathematics, just relax and look at the pictures



look at a mathematical formula as some abstract art

Regers - Ramanajan identities

$$R_{I} = \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i \equiv 1/4 \\ mod \leq i}} \frac{1}{(1-q^{i})}$$

$$R_{I} = \sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i \equiv 2/3 \\ i \equiv 2/3 \\ mod \leq i}} \frac{1}{(1-q^{i})}$$

Srinivasan Ramanujan (1887-1920)

The langage of mathematics is like the langage used to write musics.

But mathematics are musics !

Usually, in school you only learn how to write mathematics, but it is difficult to hear the beauty of mathematics. Proof of the ASM Conjecture-Act I

Subsublemma 1.1.3:

$$\sum_{\pi \in \mathcal{S}_k} \operatorname{sgn}(\pi) \cdot \pi \left[\frac{x_1 x_2^2 \dots x_k^k}{(1 - x_k)(1 - x_k x_{k-1}) \dots (1 - x_k x_{k-1} \dots x_1)} \right] = \frac{x_1 \dots x_k \prod_{1 \le i < j \le k} (x_j - x_i)}{\prod_{i=1}^k (1 - x_i) \prod_{1 \le i < j \le k} (1 - x_i x_j)} (Issai)$$

[Type 'S113(k);' in ROBBINS, for specific k.]

Proof : See [PS], problem VII.47. Alternatively, (Issai) is easily seen to be equivalent to Schur's identity that sums all the Schur functions ([Ma], ex I.5.4, p. 45). This takes care of subsublemma 1.1.3. \Box

Inserting (Issai) into (Stanley), expanding $\prod_{1 \le i < j \le k} (x_j - x_i)$ by Vandermonde's expansion,

$$\sum_{\pi \in \mathcal{S}_k} \operatorname{sgn}(\pi) \cdot \pi(x_1^0 x_2^1 \cdots x_k^{k-1})$$

using the antisymmetry of Δ_k once again, and employing crucial fact \aleph_4 , we get the following string of equalities:

$$\begin{split} b_k(n) &= \frac{1}{k!} CT_{x_1,\dots,x_k} \left\{ \frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n} x_i^{n+k-1}} \left(\frac{x_1 \cdots x_k \prod_{1 \le i < j \le k} (x_j - x_i)}{\prod_{i=1}^k (1 - x_i) \prod_{1 \le i < j \le k} (1 - x_i x_j)} \right) \right\} \\ &= \frac{1}{k!} CT_{x_1,\dots,x_k} \left\{ \frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-2} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \left(\sum_{\pi \in \mathcal{S}_k} \operatorname{sgn}(\pi) \cdot \pi(x_1^0 x_2^1 \dots x_k^{k-1}) \right) \right\} \\ &= \frac{1}{k!} \sum_{\pi \in \mathcal{S}_k} CT_{x_1,\dots,x_k} \left\{ \pi \left[\frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-2} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \left(\prod_{i=1}^k x_i^{i-1} \right) \right] \right\} \\ &= \frac{1}{k!} \sum_{\pi \in \mathcal{S}_k} CT_{x_1,\dots,x_k} \left\{ \pi \left[\frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-i-1} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \right] \right\} \\ &= \frac{1}{k!} \sum_{\pi \in \mathcal{S}_k} CT_{x_1,\dots,x_k} \left\{ \pi \left[\frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-i-1} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \right] \right\} \\ &= \frac{1}{k!} \sum_{\pi \in \mathcal{S}_k} CT_{x_1,\dots,x_k} \left\{ \frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-i-1} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \right\} \\ &= CT_{x_1,\dots,x_k} \left\{ \frac{\Delta_k(x_1,\dots,x_k)}{\prod_{i=1}^k (\bar{x}_i)^{k+n+1} x_i^{n+k-i-1} \prod_{1 \le i < j \le k} (1 - x_i x_j)} \right\} , \quad (George''') \end{split}$$

where in the last equality we have used Levi Ben Gerson's celebrated result that the number of elements in S_k (the symmetric group on k elements,) equals k!. The extreme right of (*George'''*) is exactly the right side of (*MagogTotal*). This completes the proof of sublemma 1.1. \Box

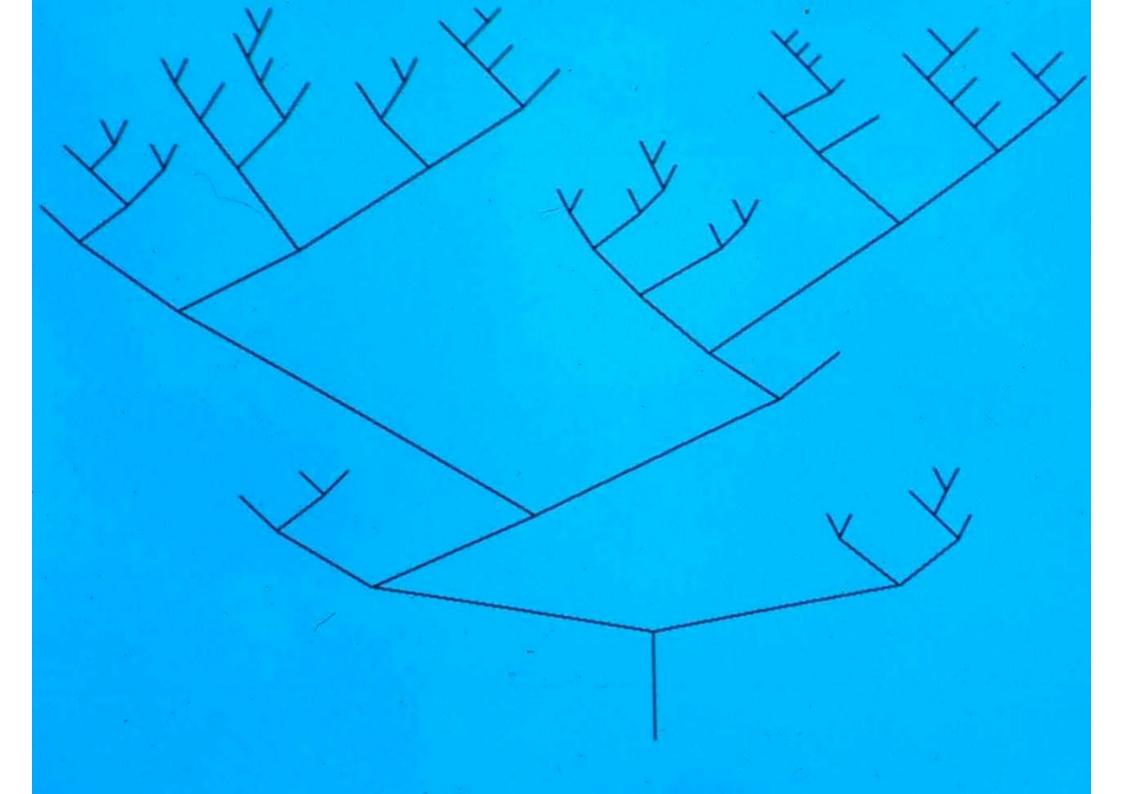
W. A. M. 608.

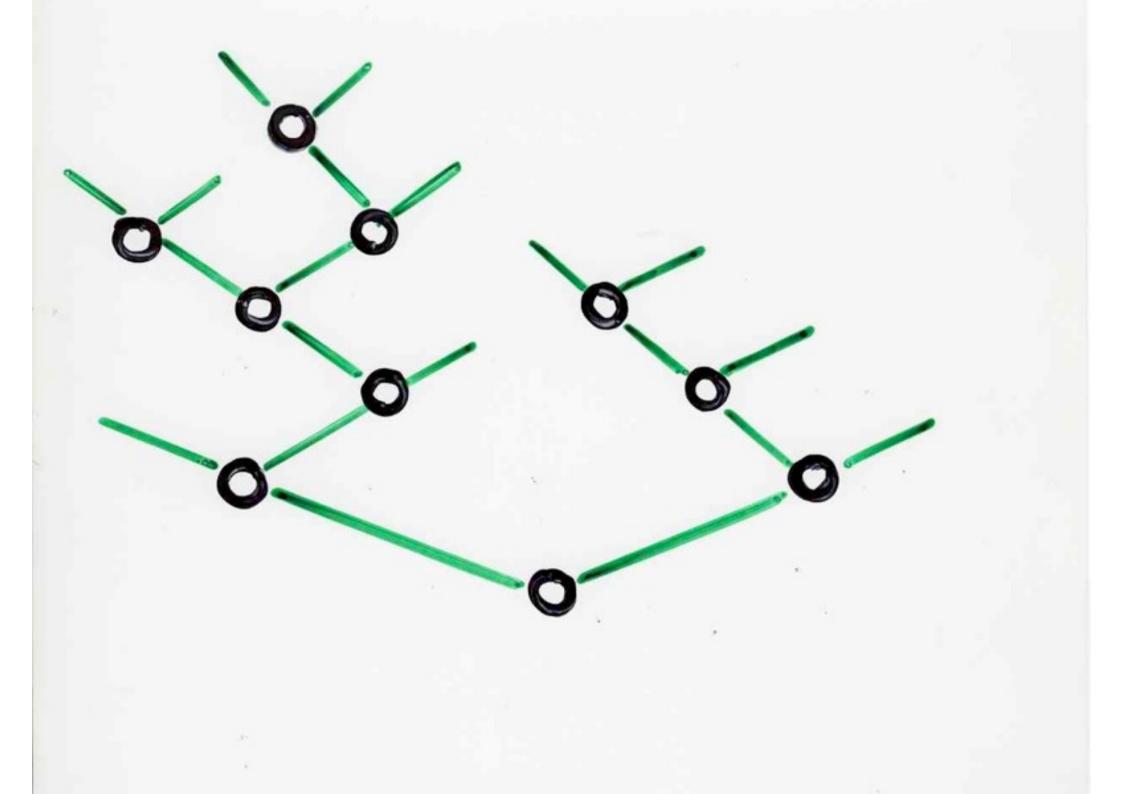
An example of mathematical object: binary trees or mathematical trees

> giving an abstraction of the trees in the world around us

From trees in nature... to mathematical trees



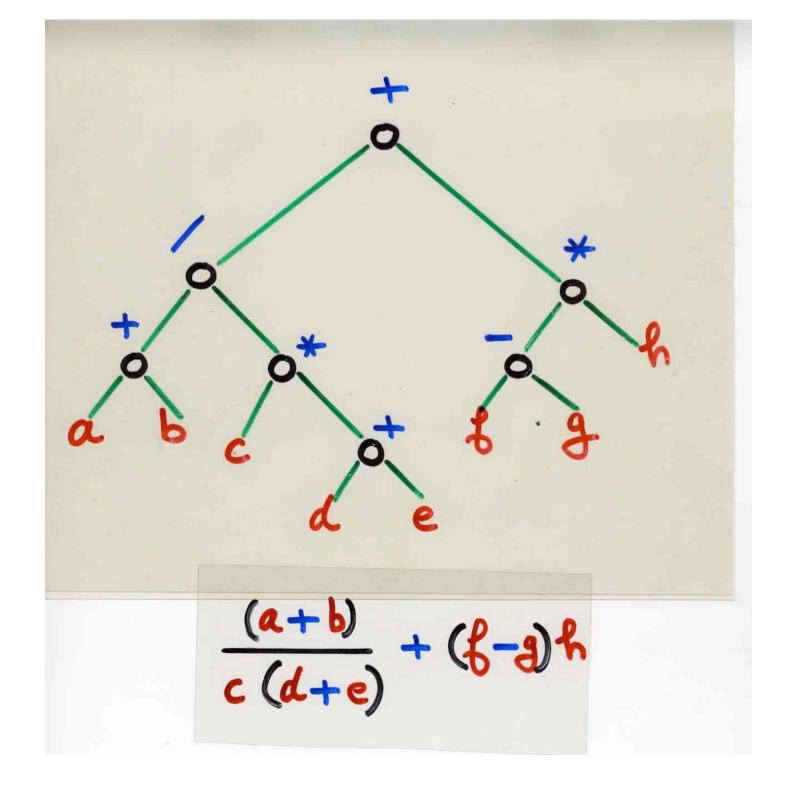


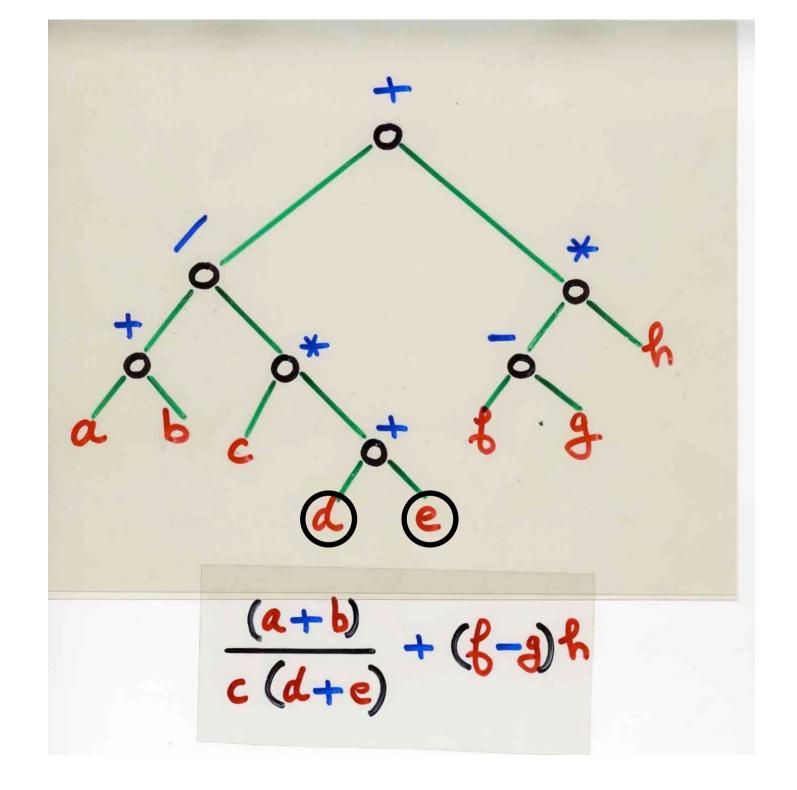


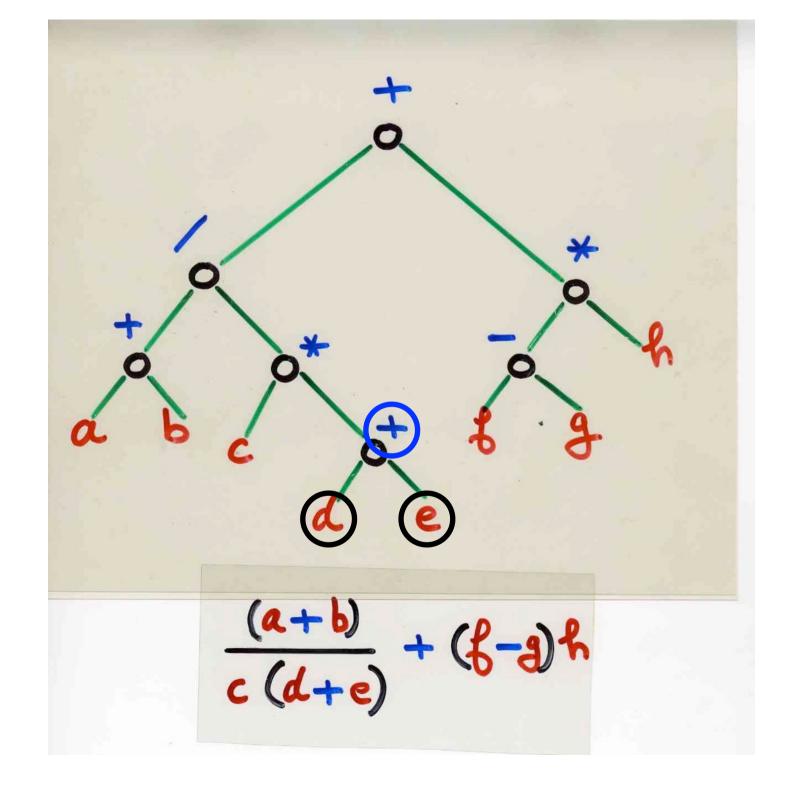
Trees in computers ...

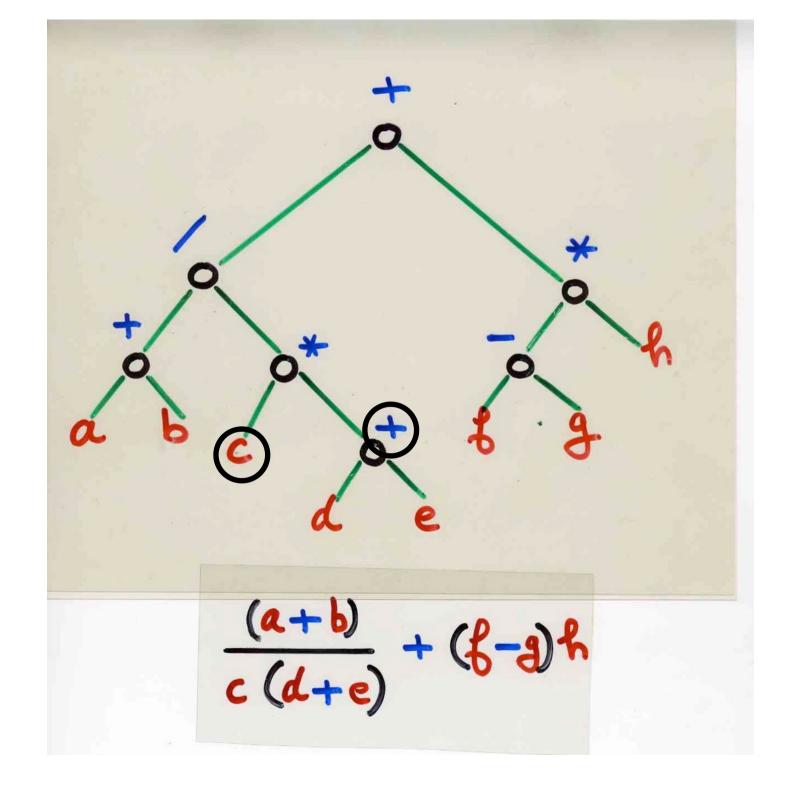
computing an arithmetical expression

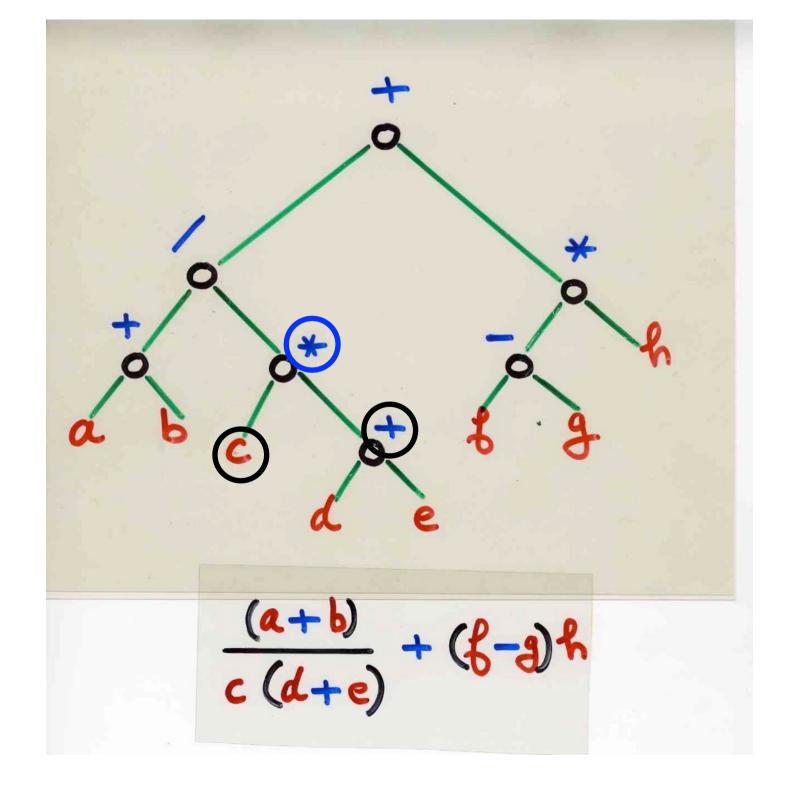
 $\frac{(a+b)}{c(d+e)} + (b-a)h$

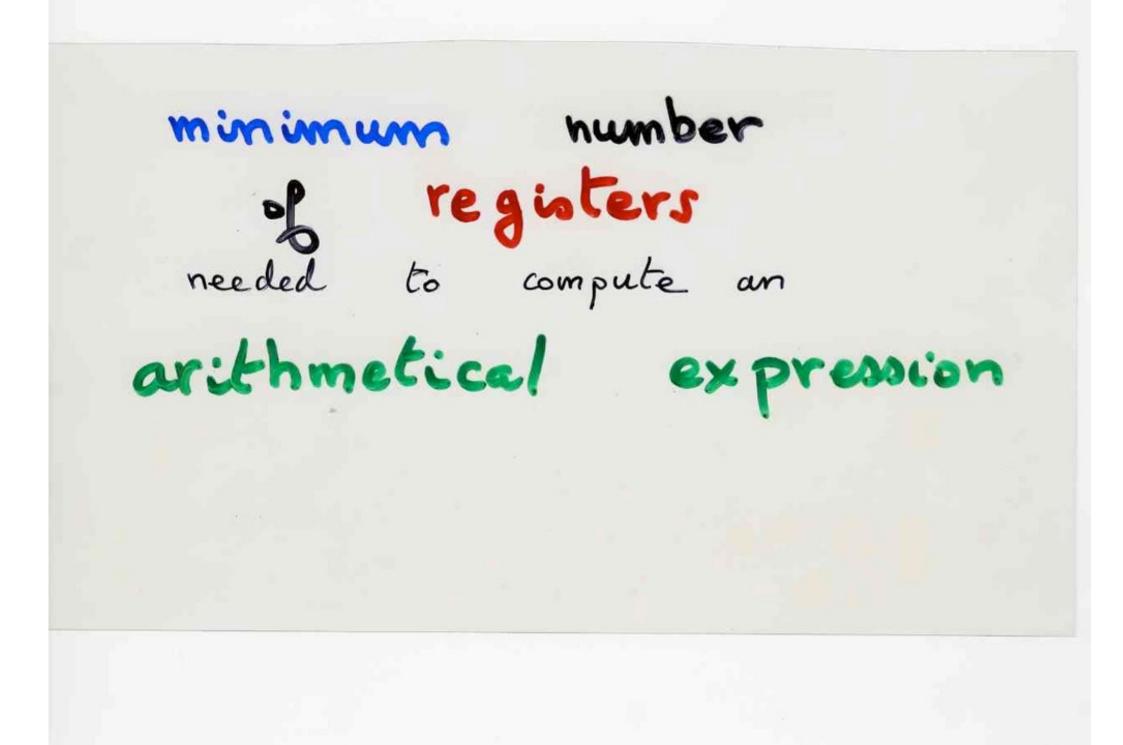


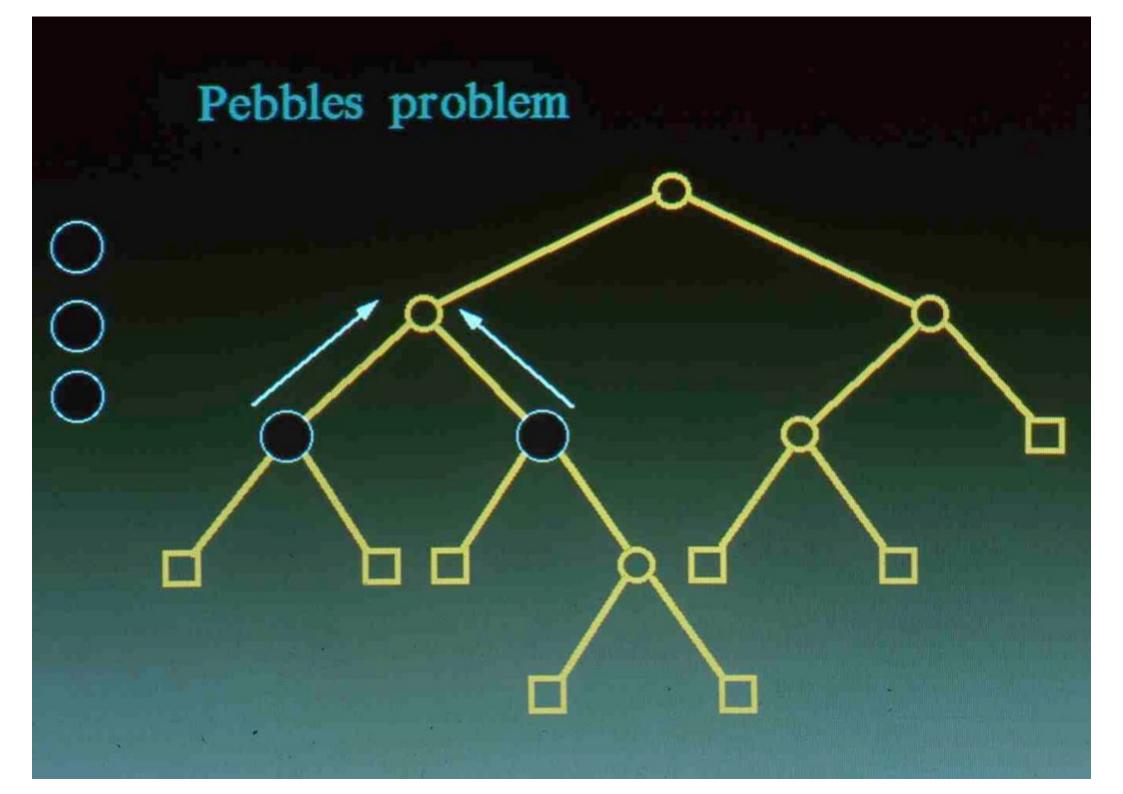


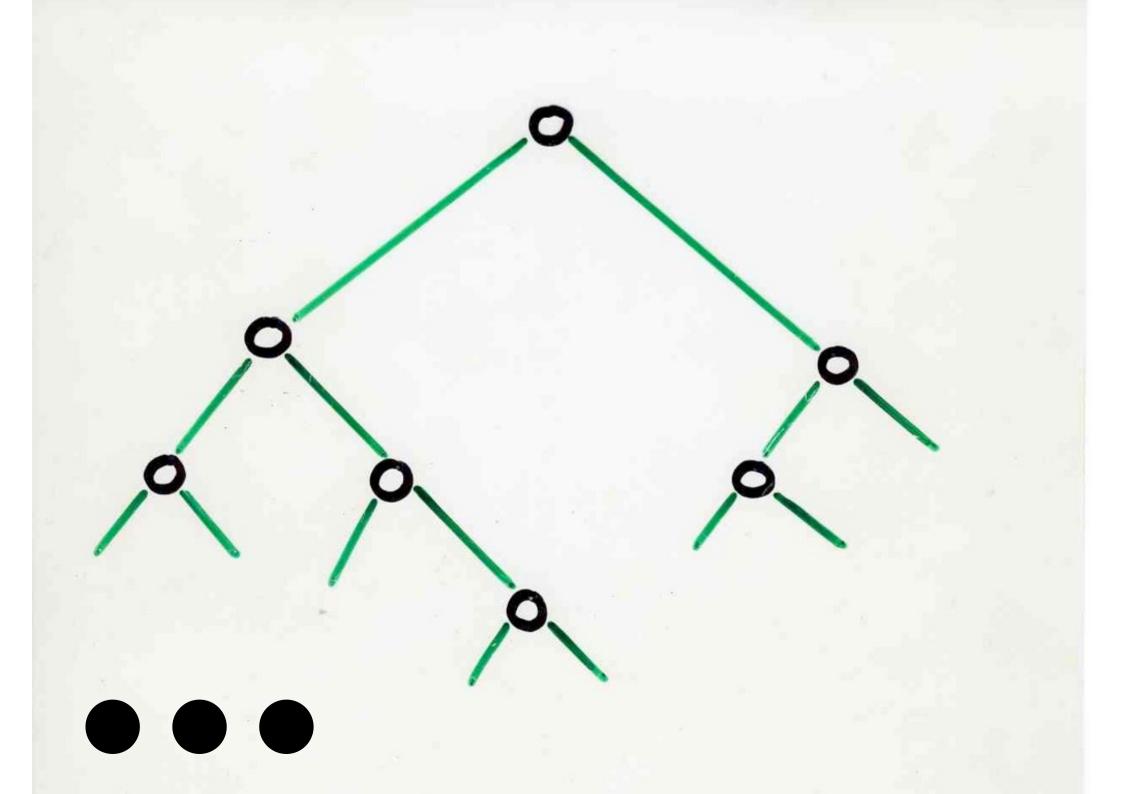


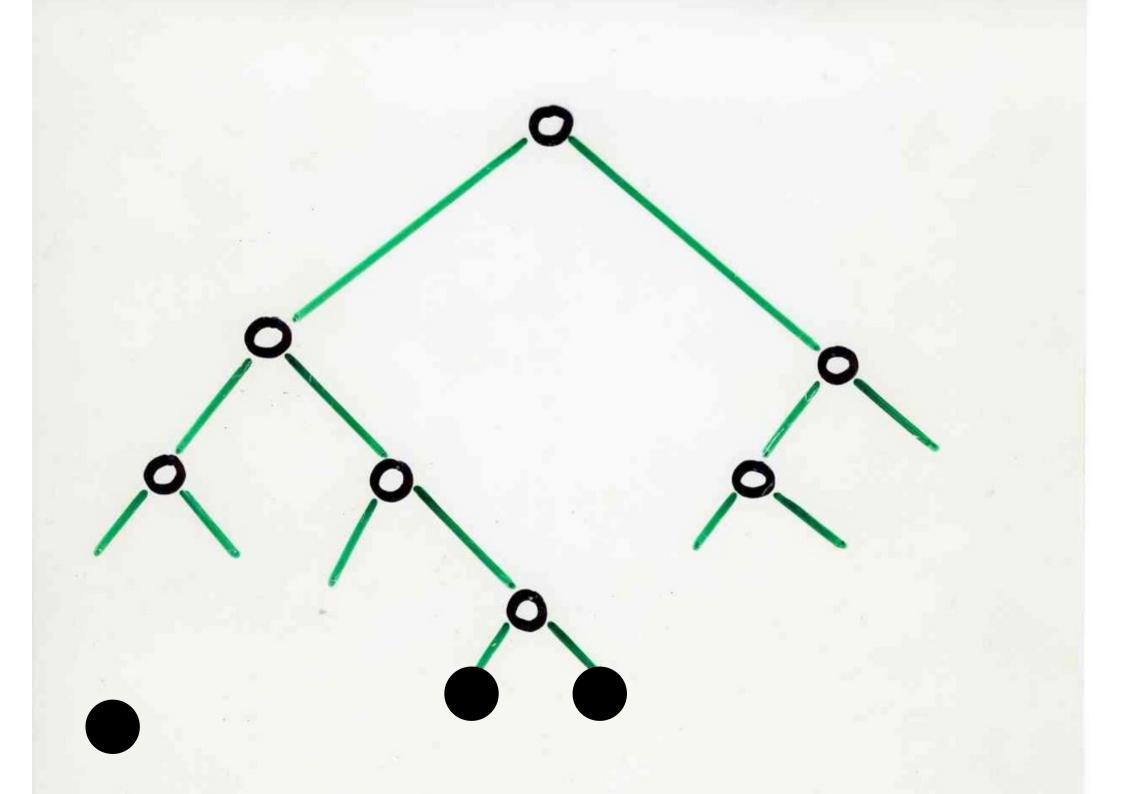


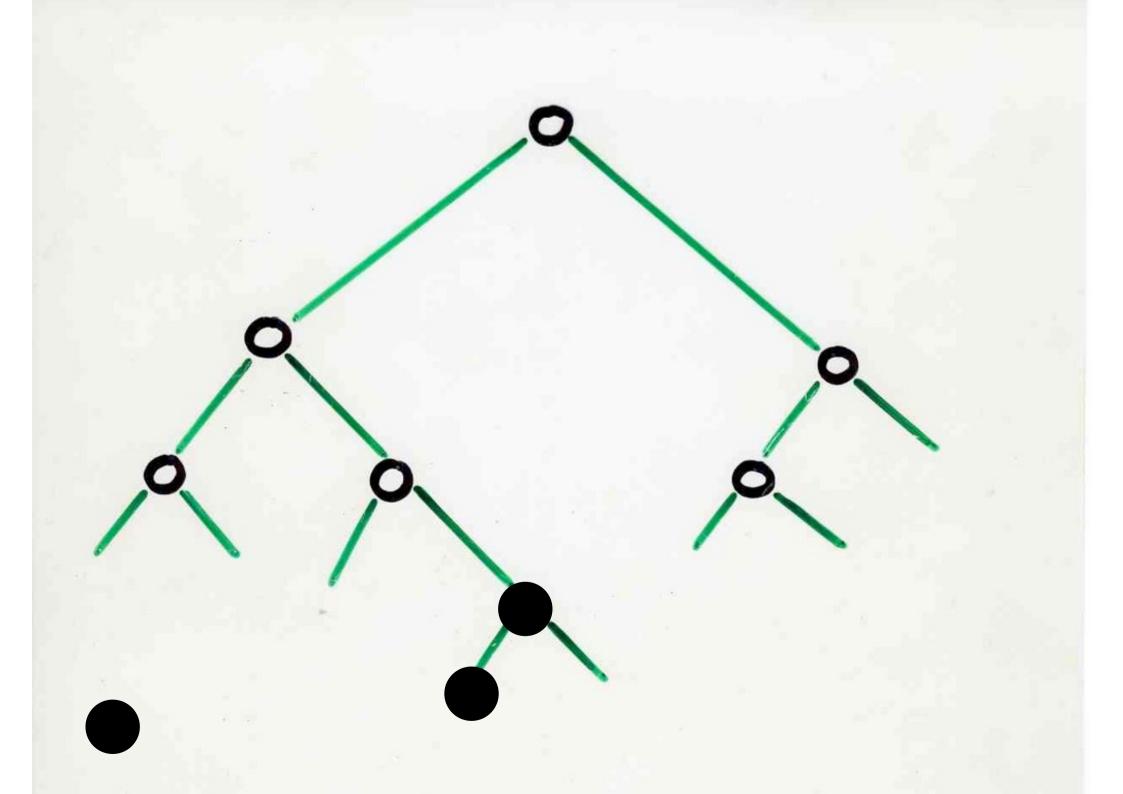


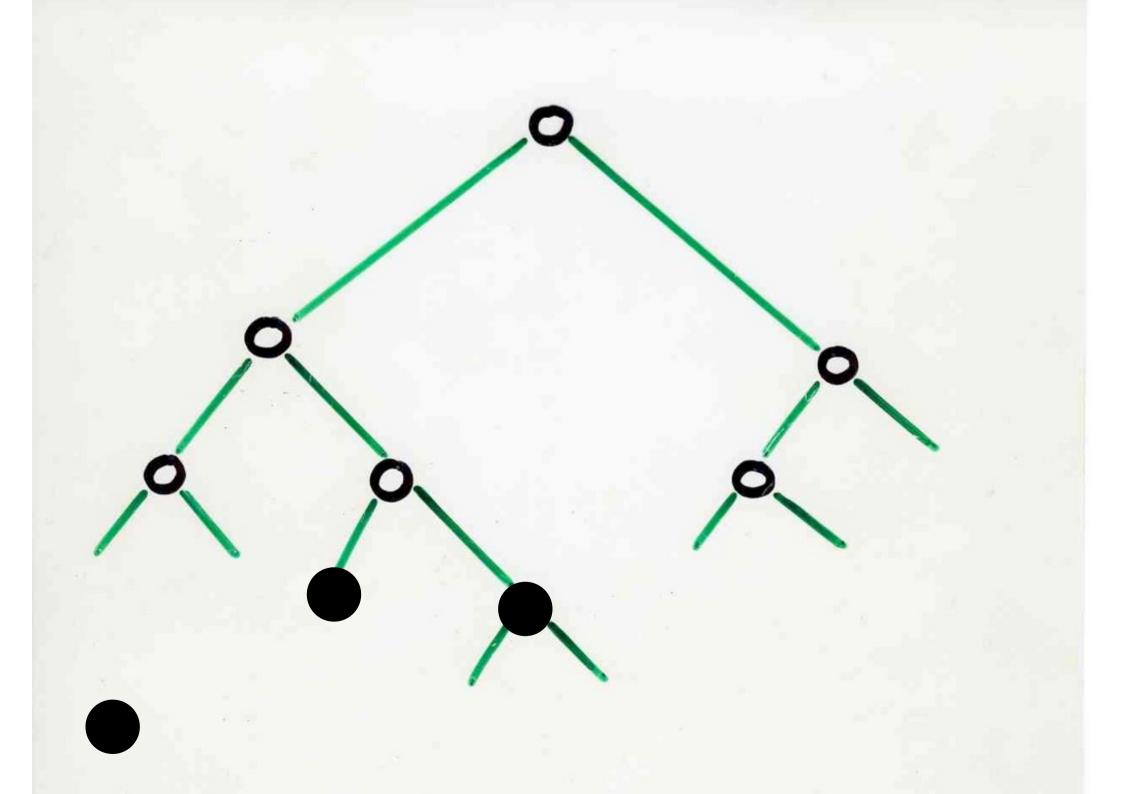


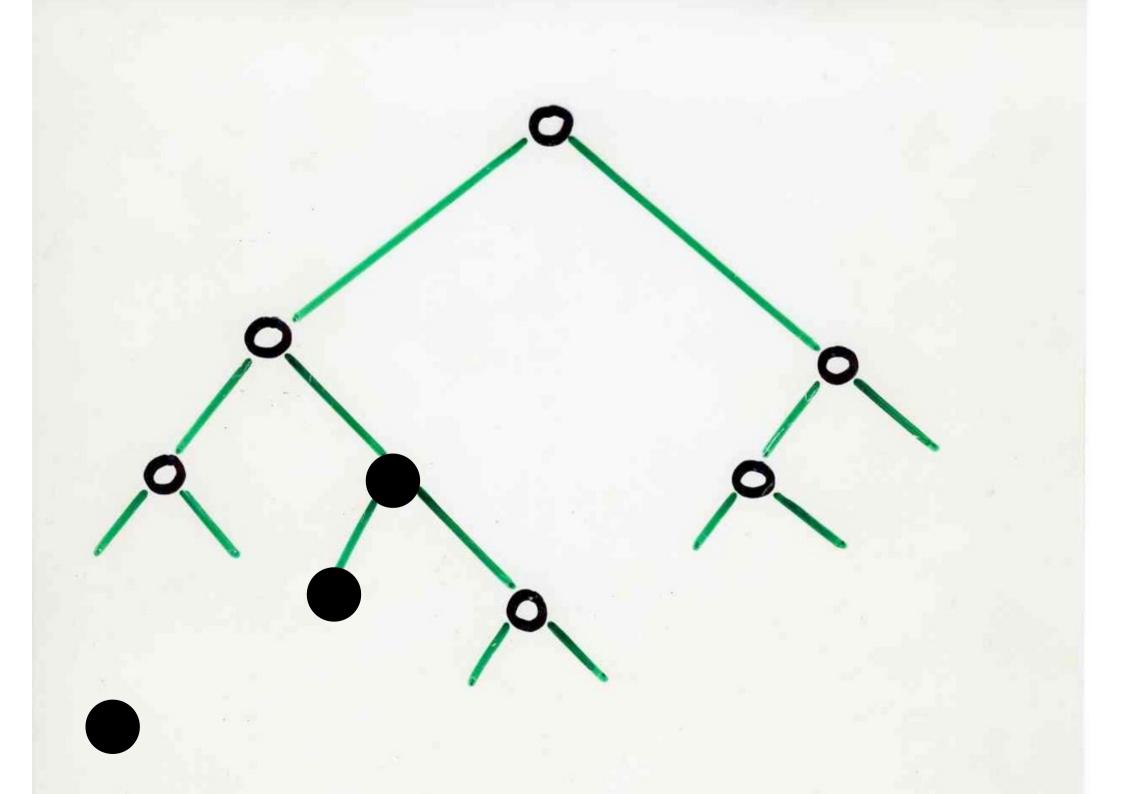


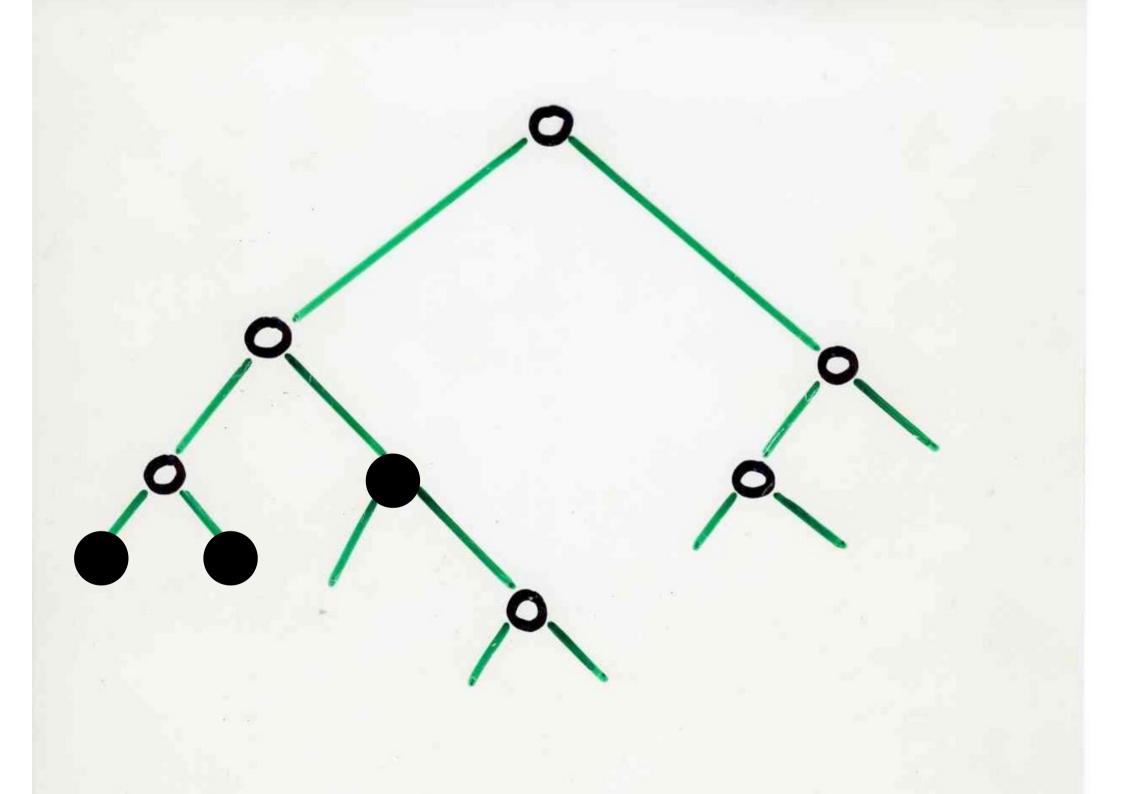


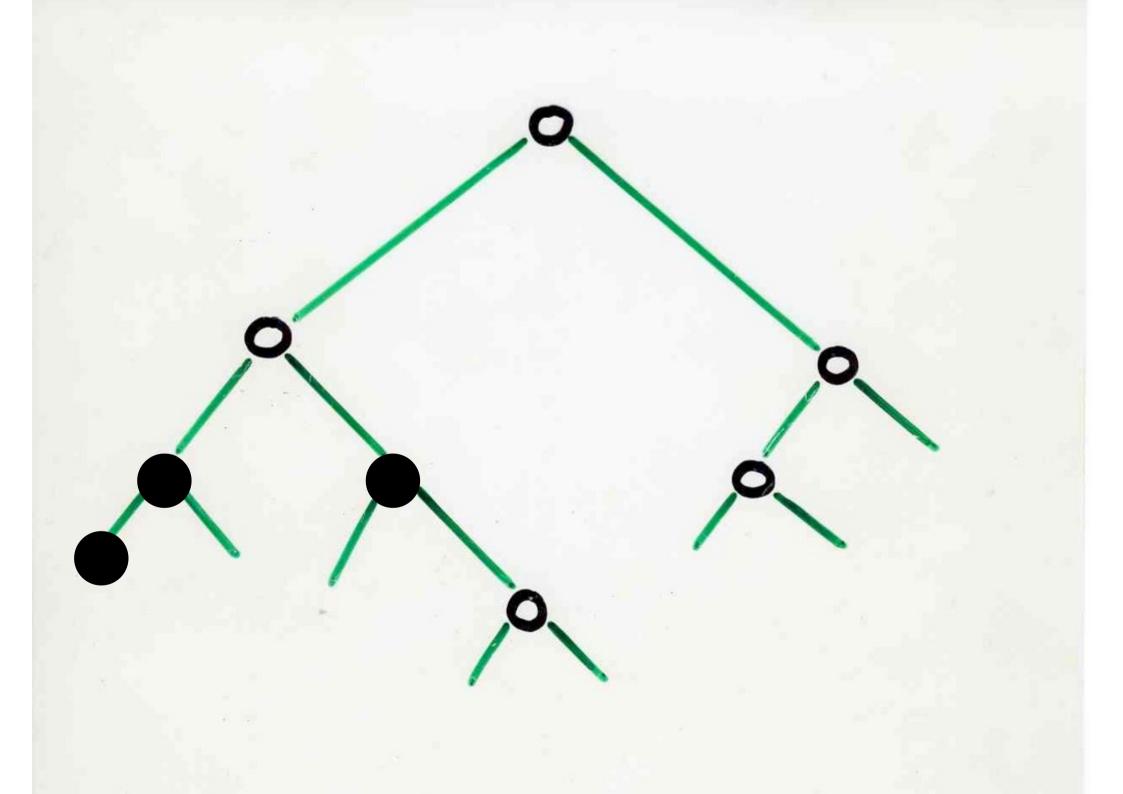


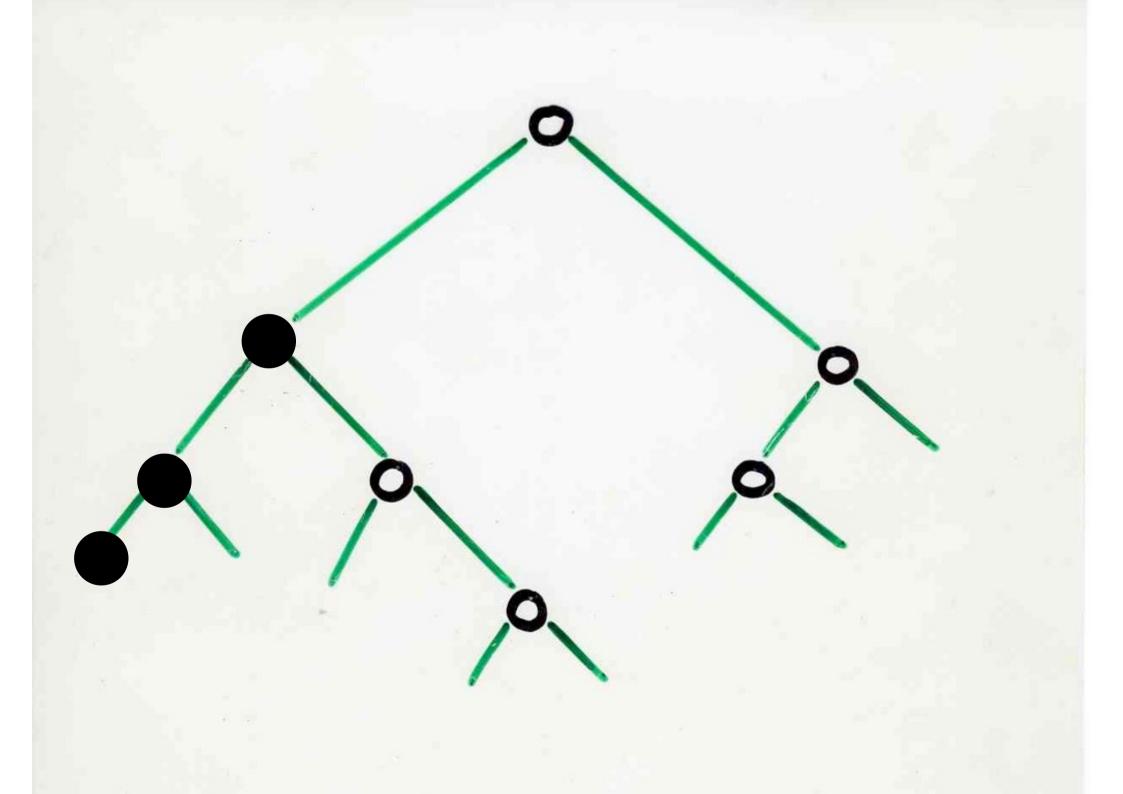


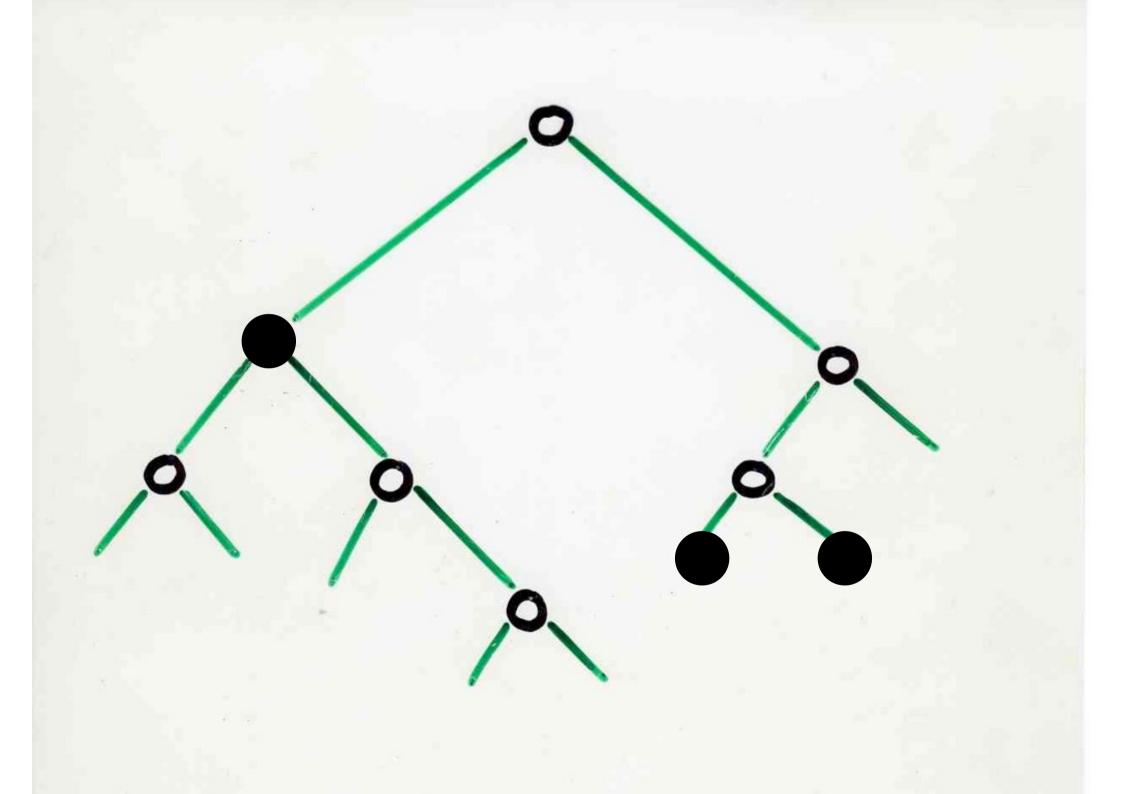


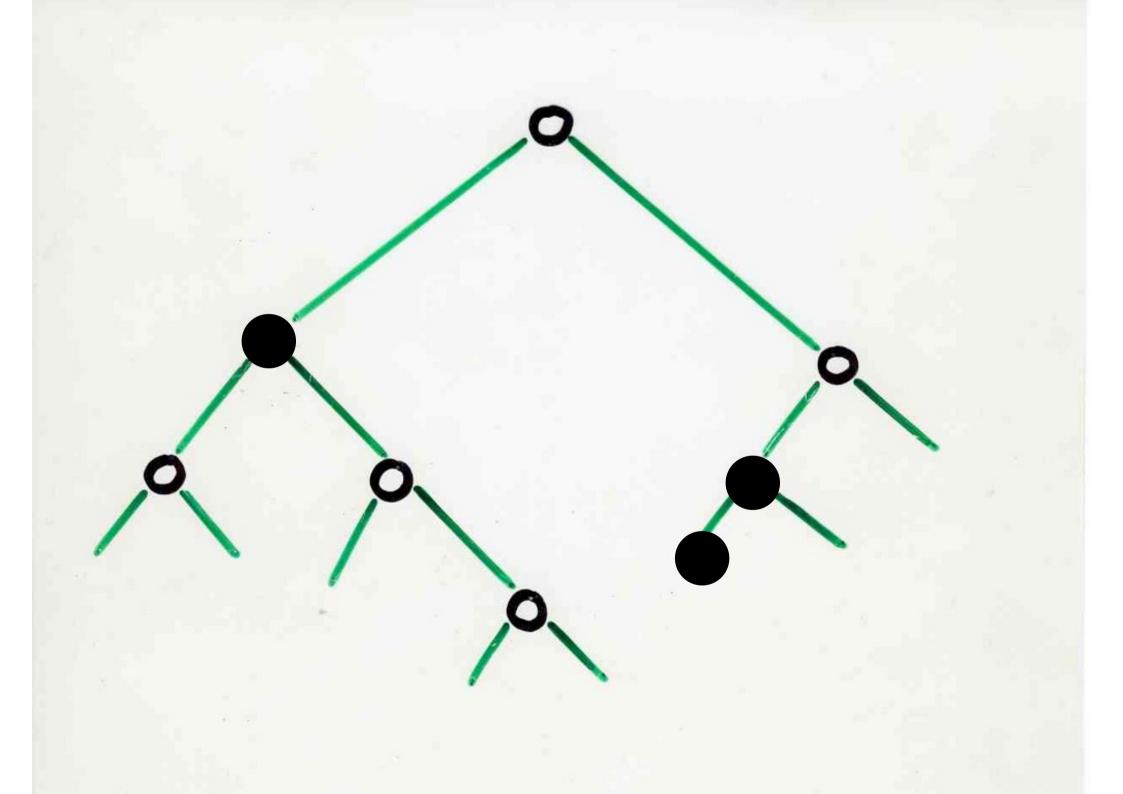


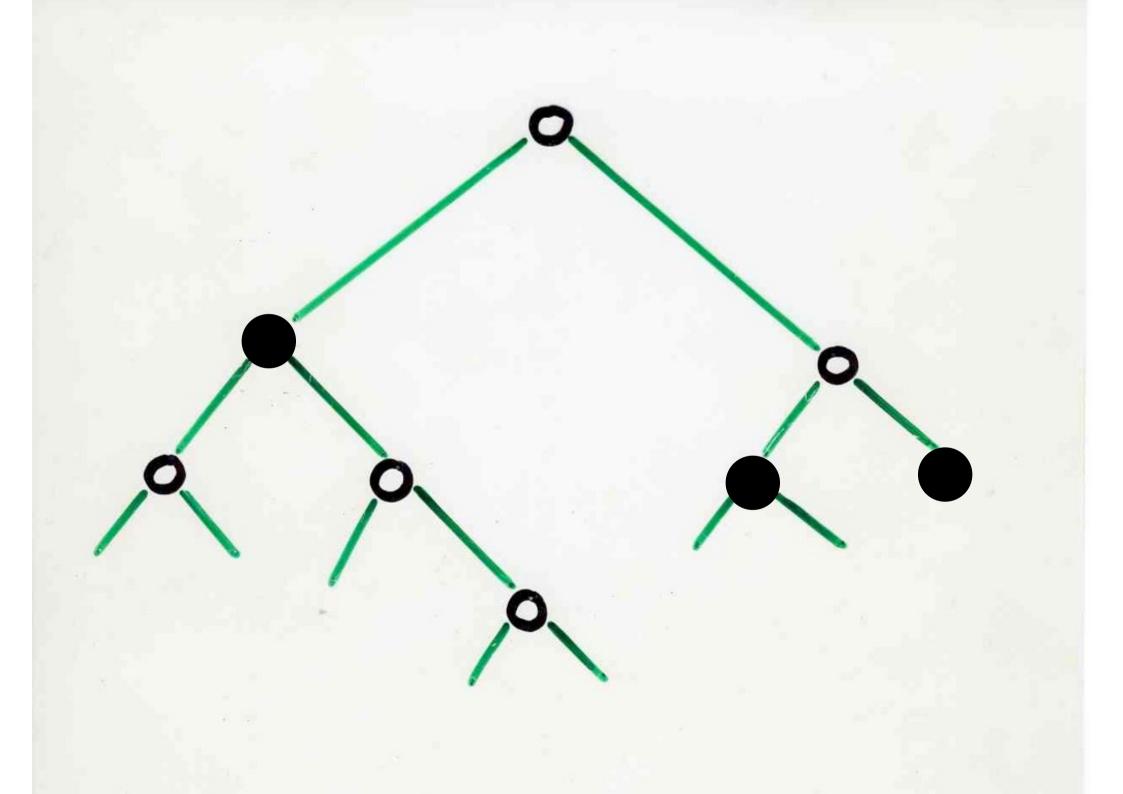


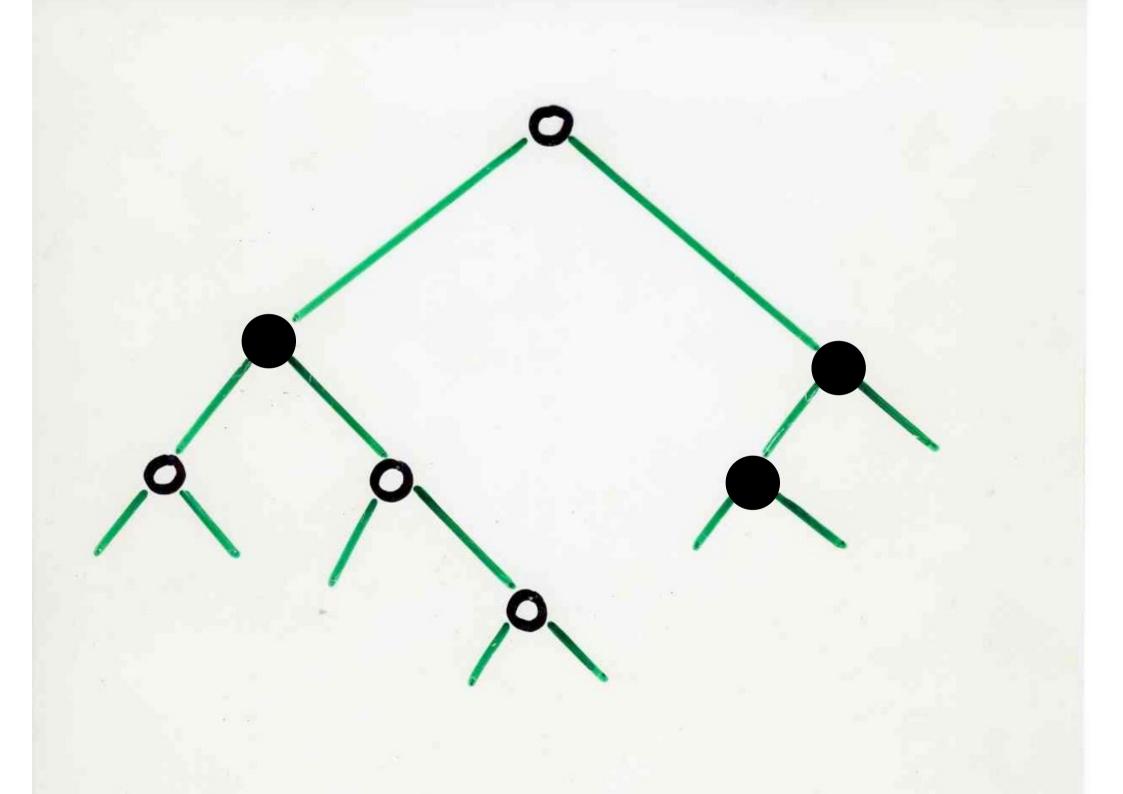


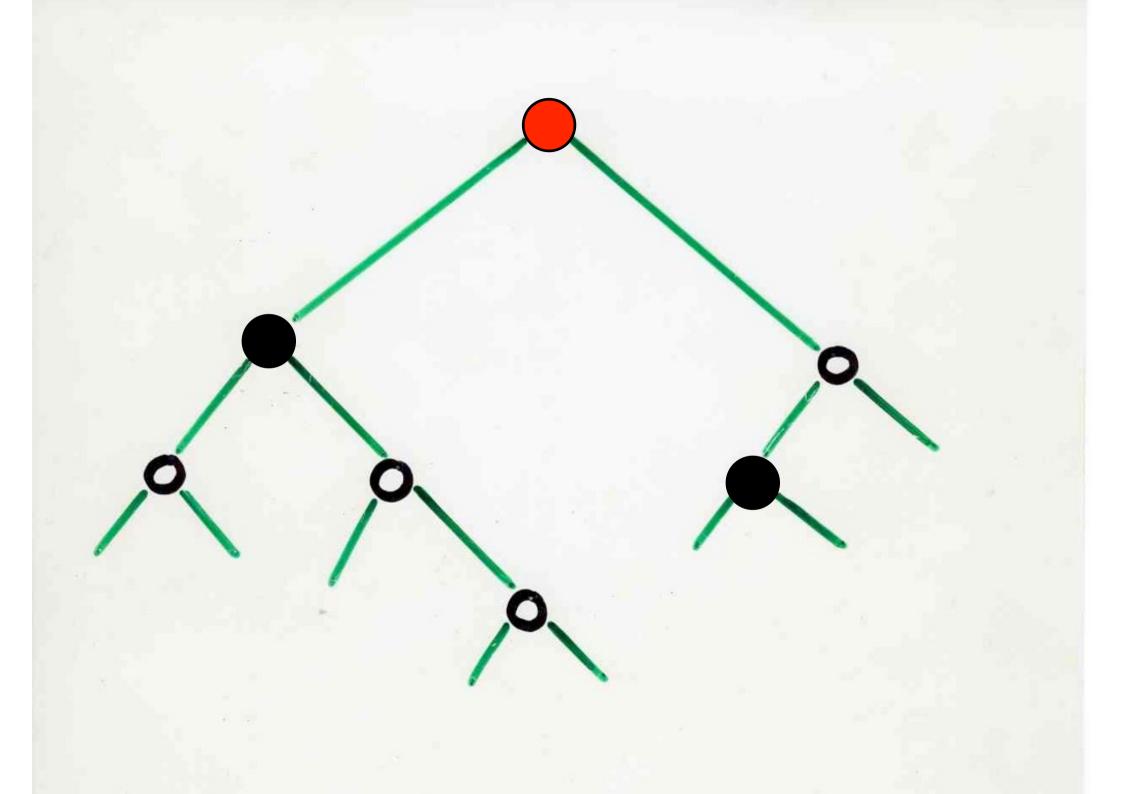






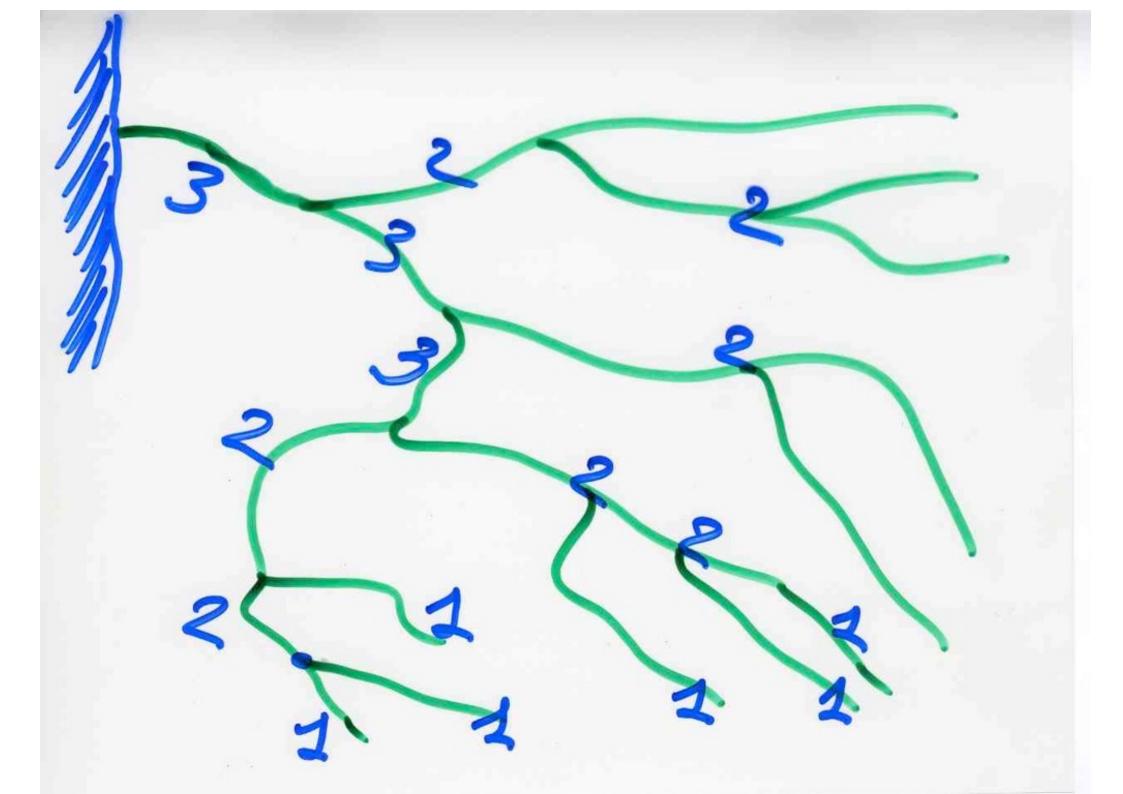


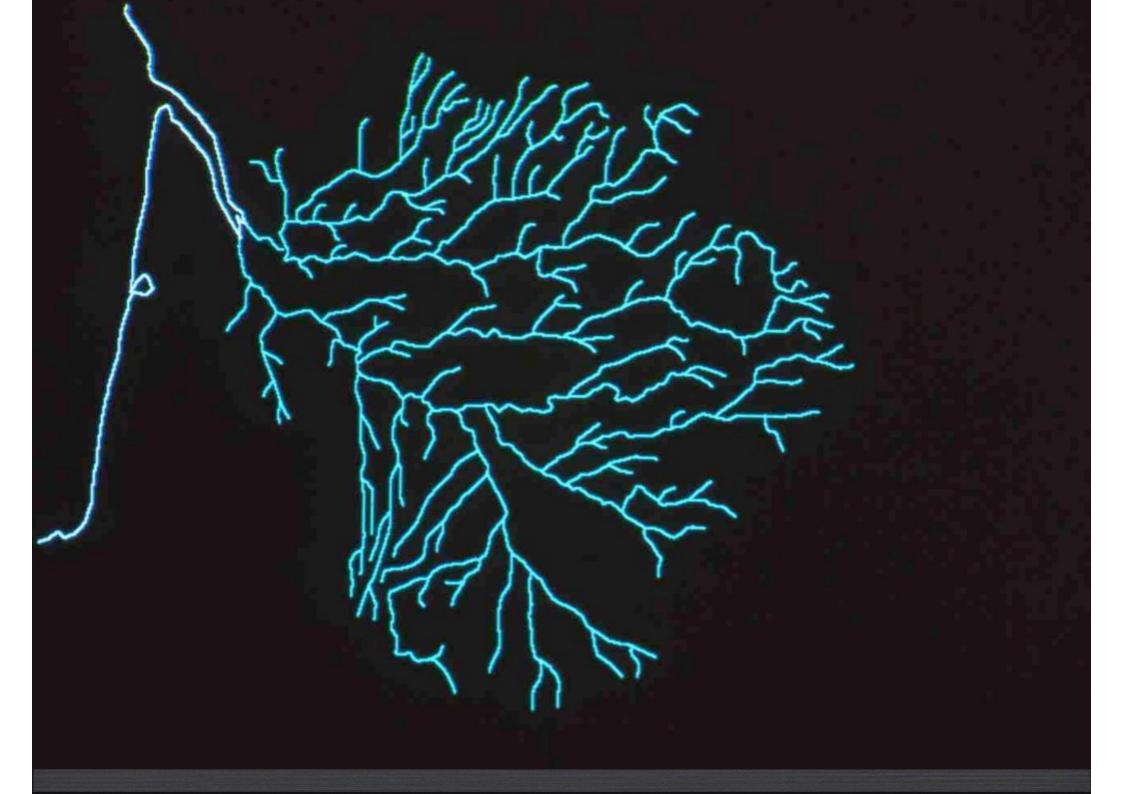


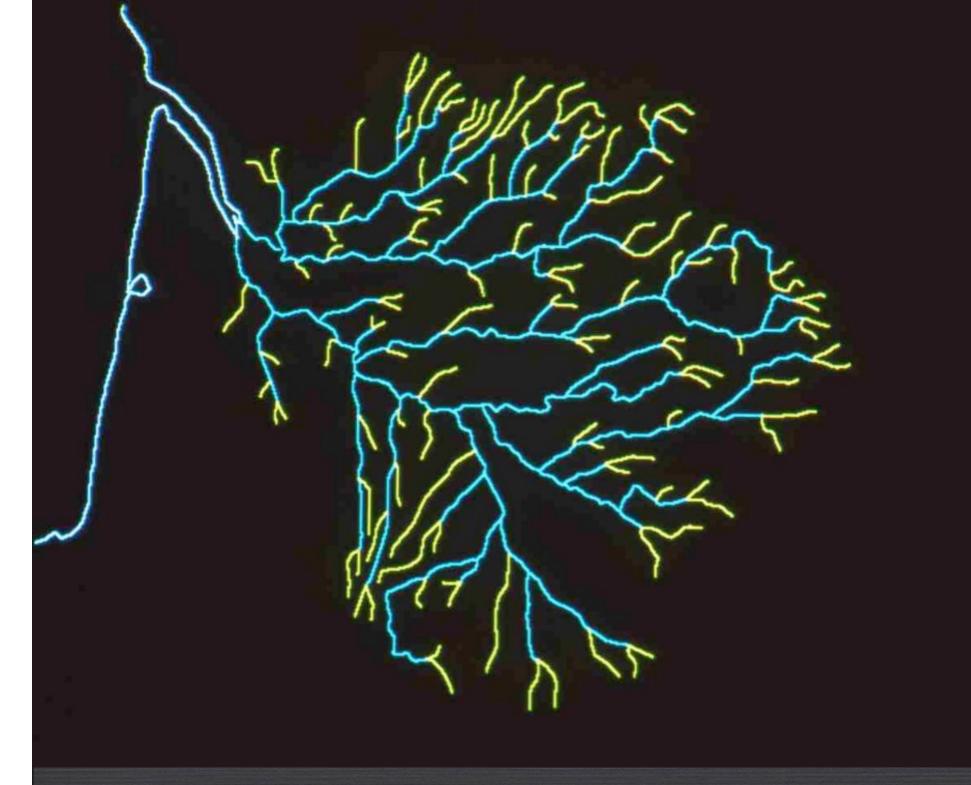


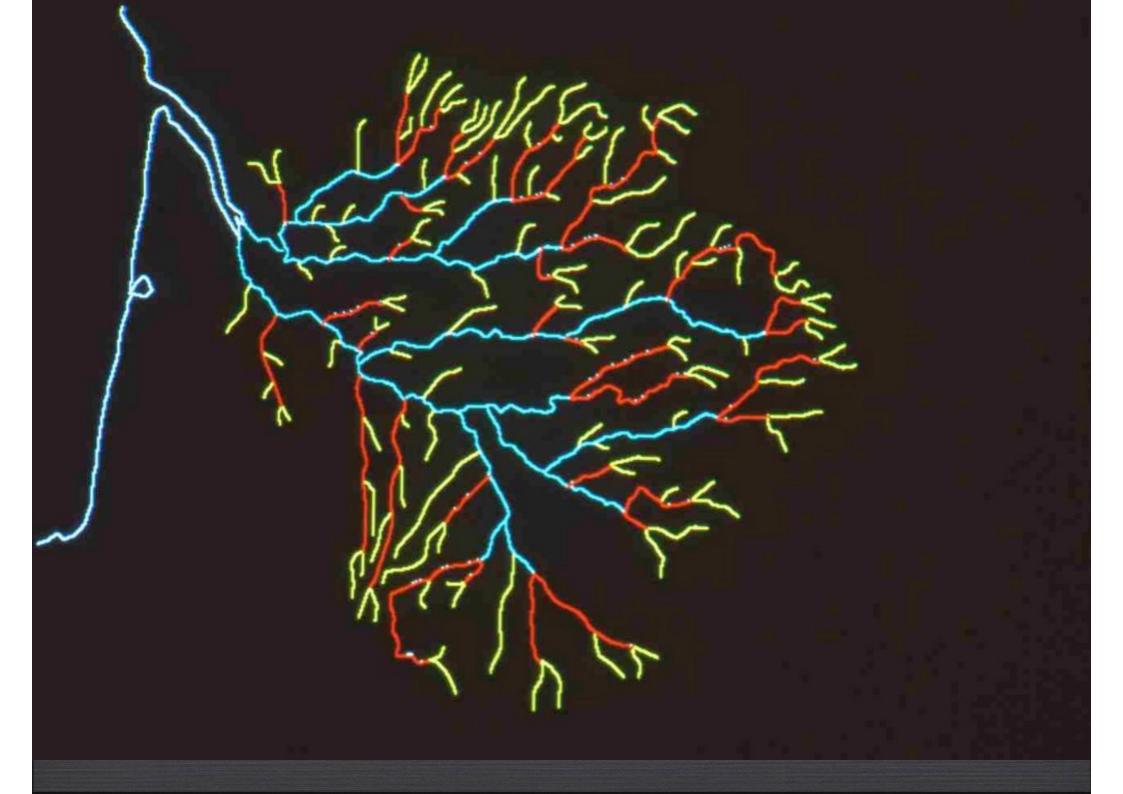
From trees to rivers

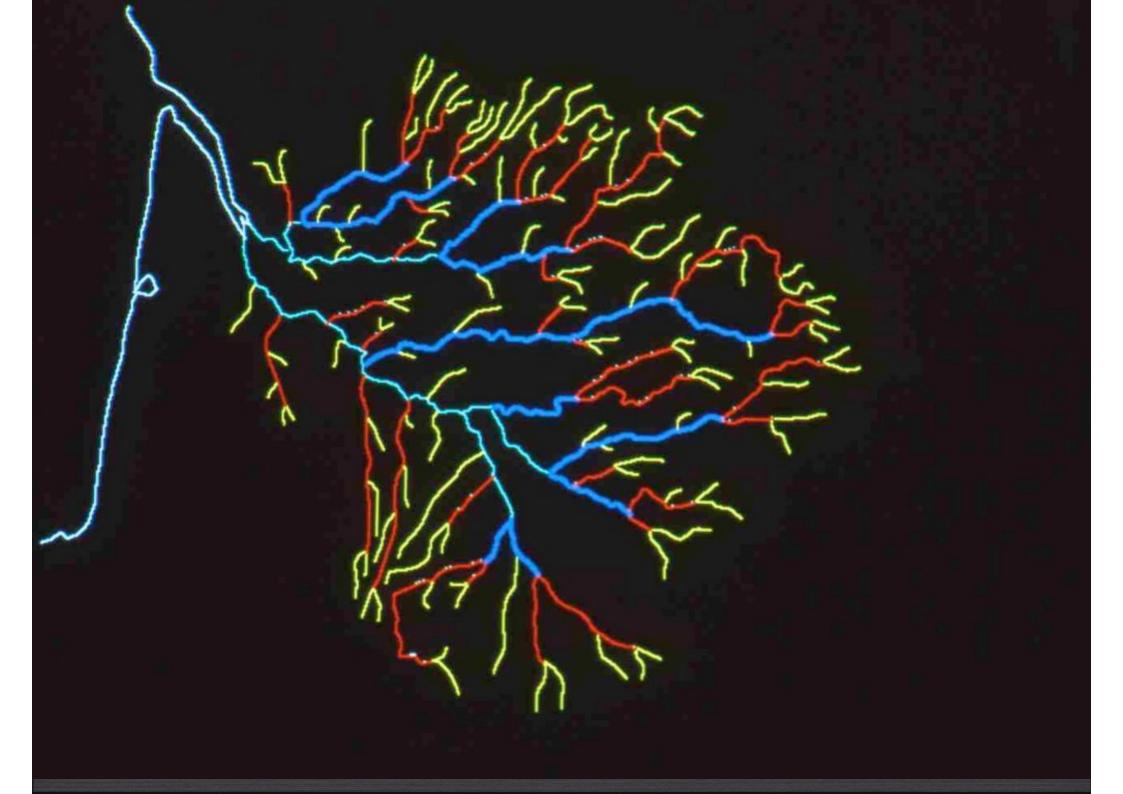
Horton (1945) Strahler (1952) Morph-Egy rivers Order of a river

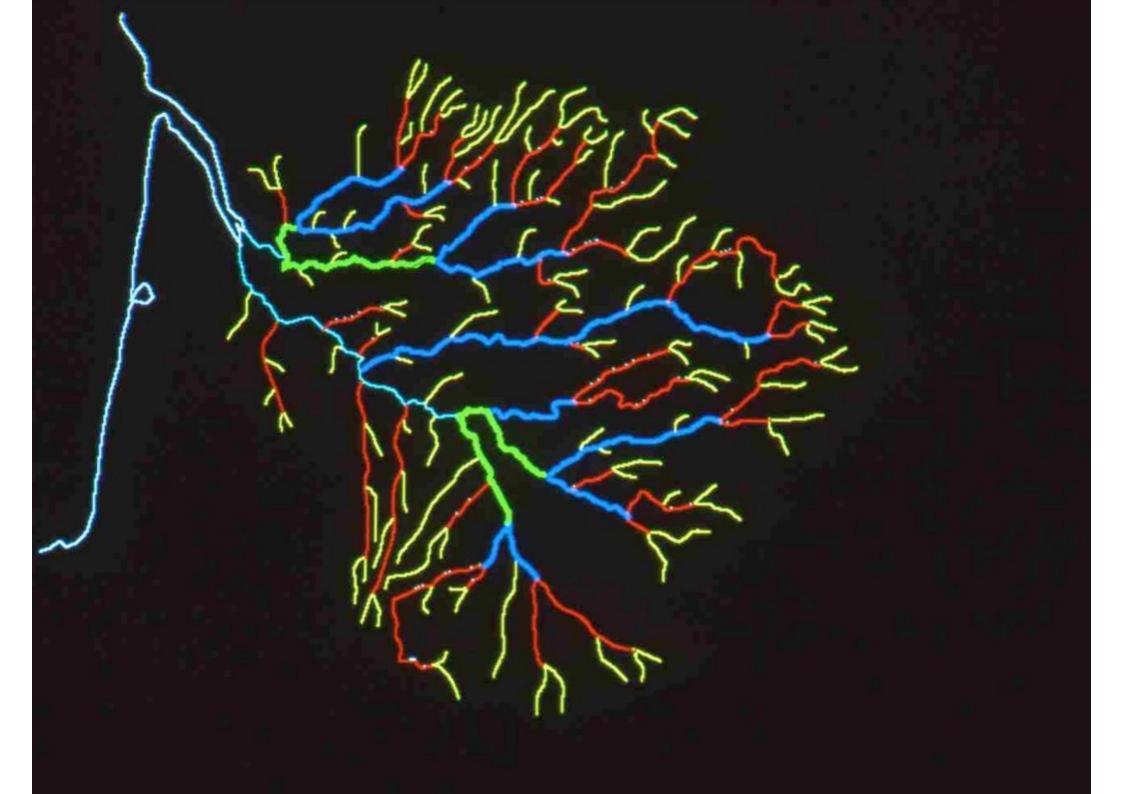


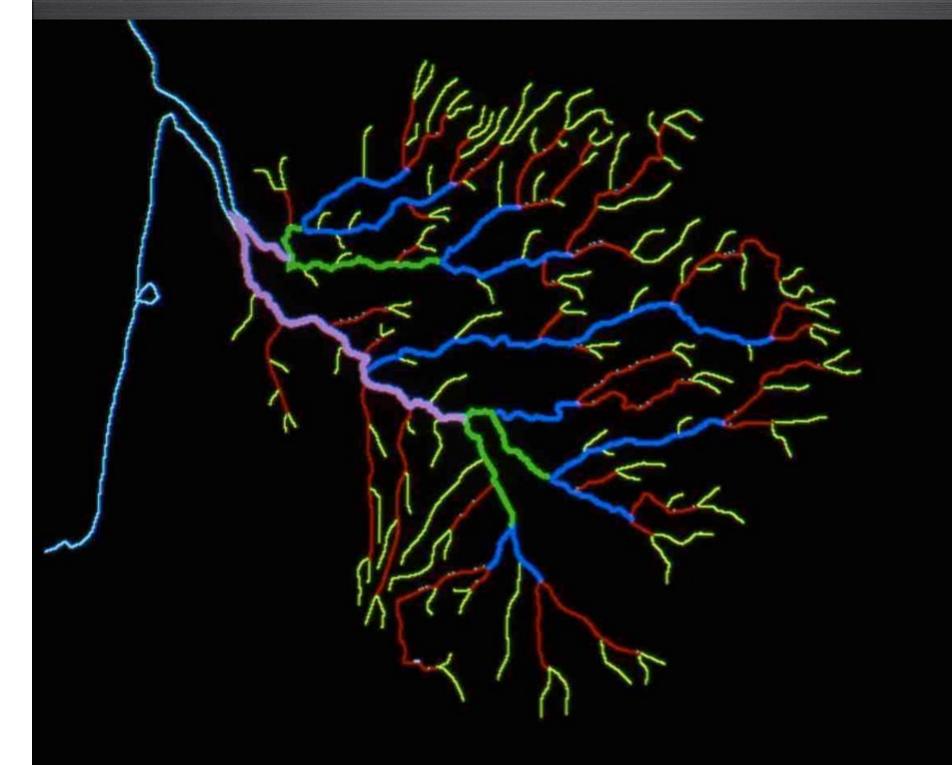


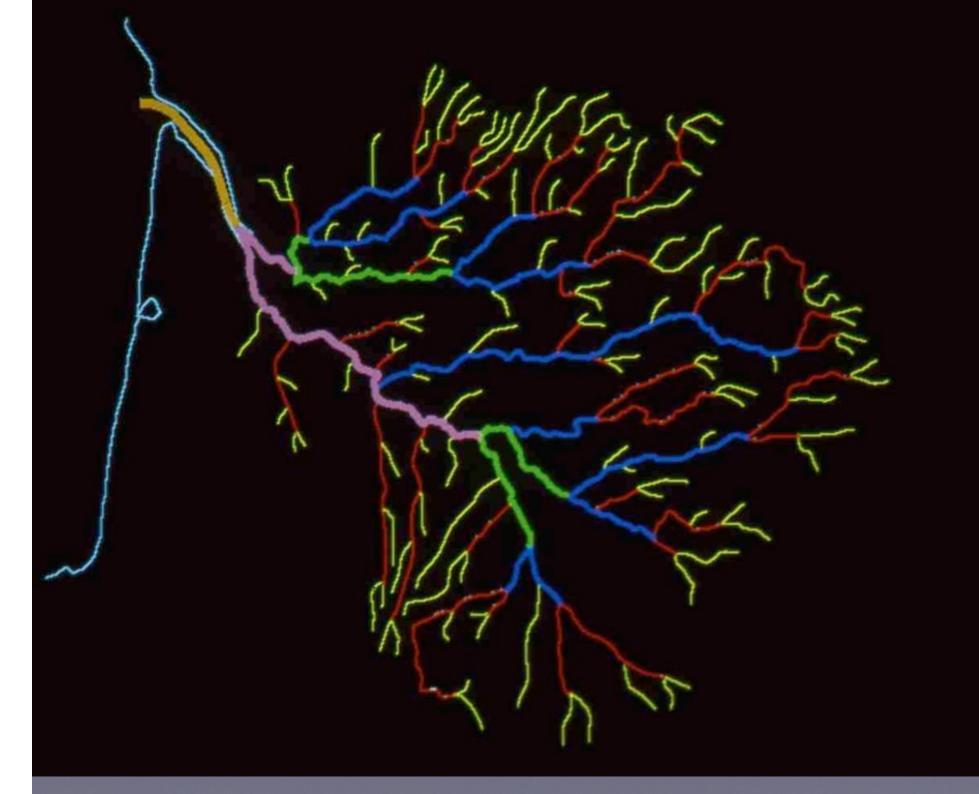


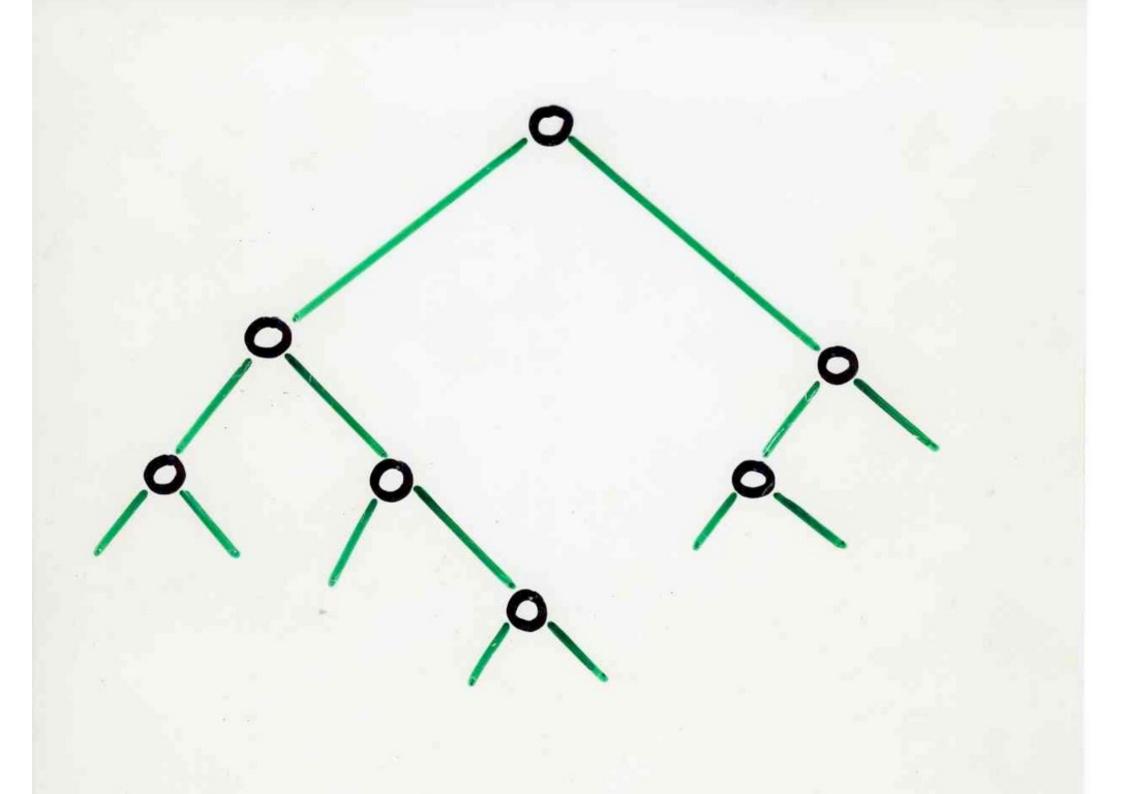


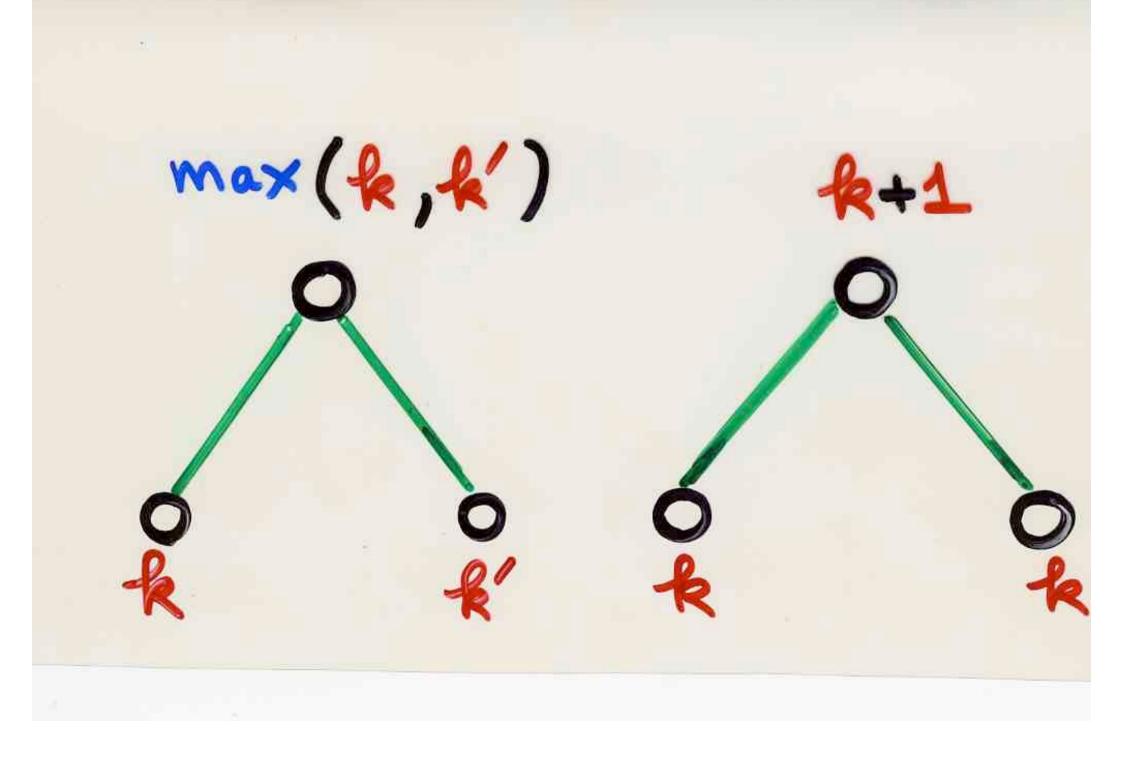












= minimum number of registers

) = St(B) nombre de Strahler

river or segment or order k

Segment of order k

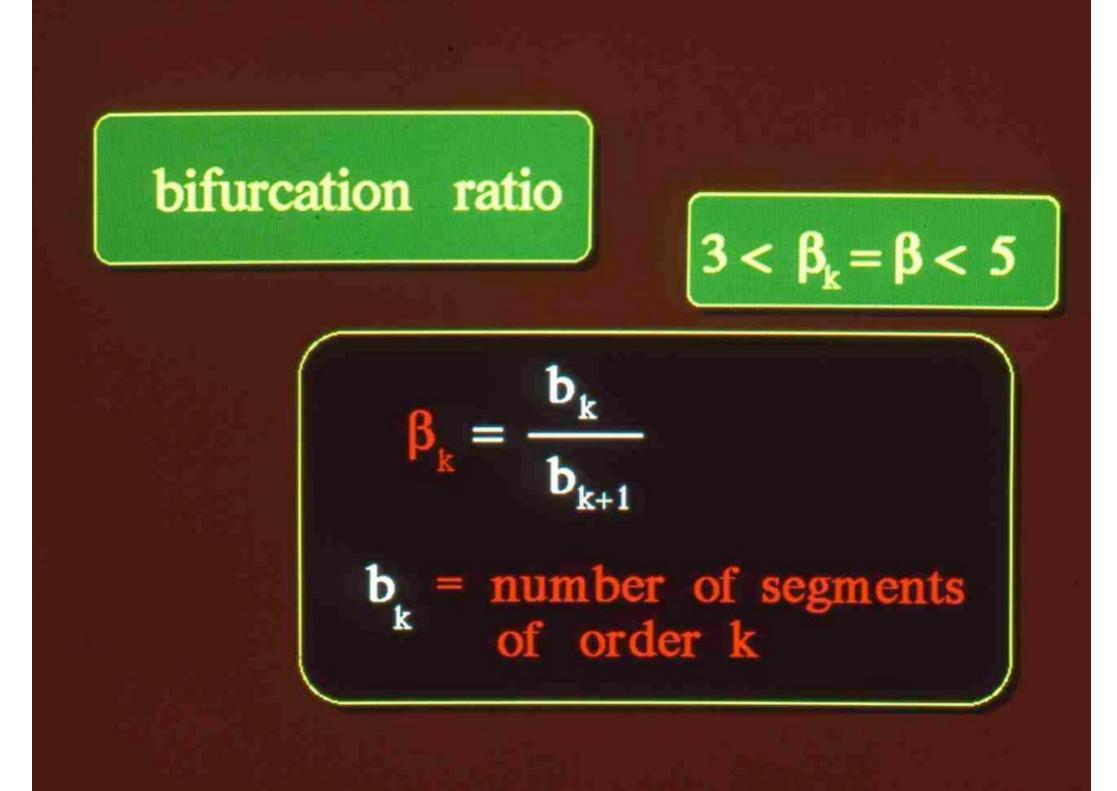
k

K>k

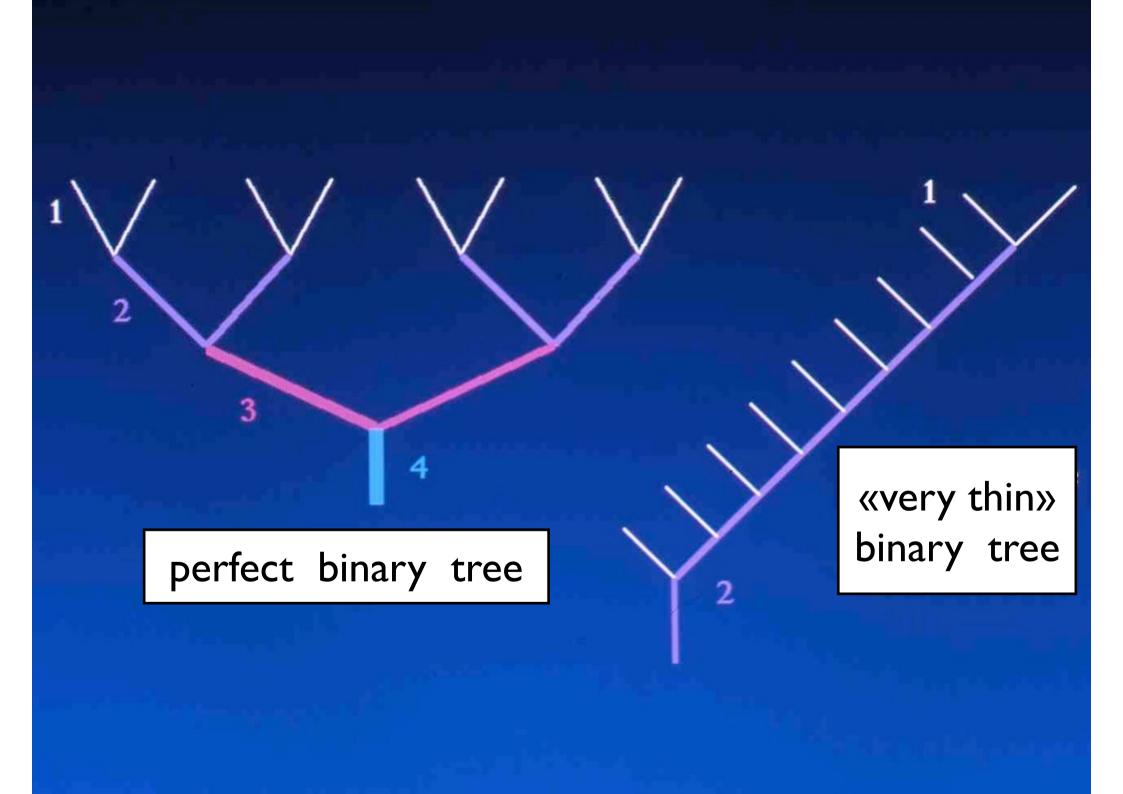
k-1

k-1

k



Segments



correlation between the «shape» of the river network and the structure of the deep underground

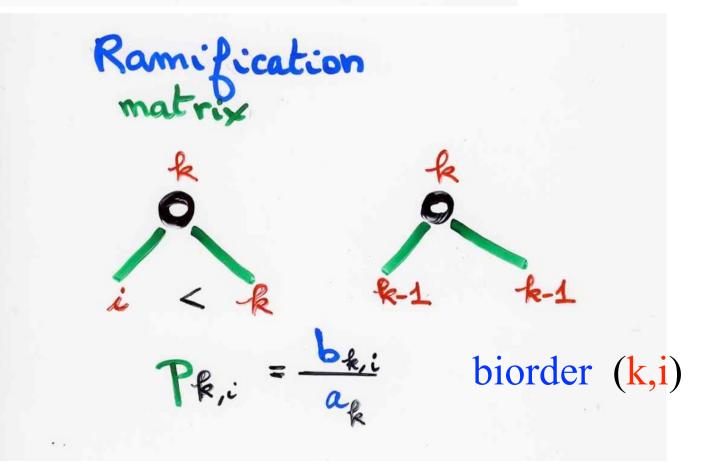
Prud'homme, Nadeau, Vigneaux, 1970, 1980

computer graphics

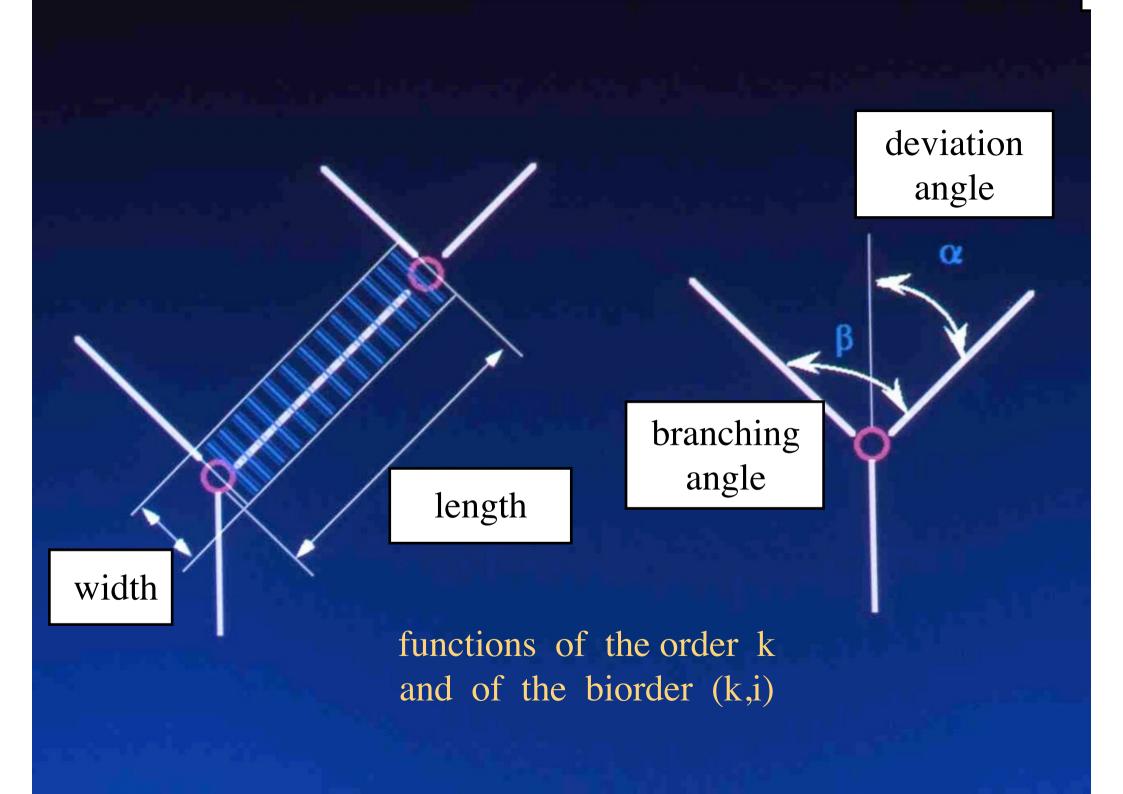
ramification matrix of a binary tree

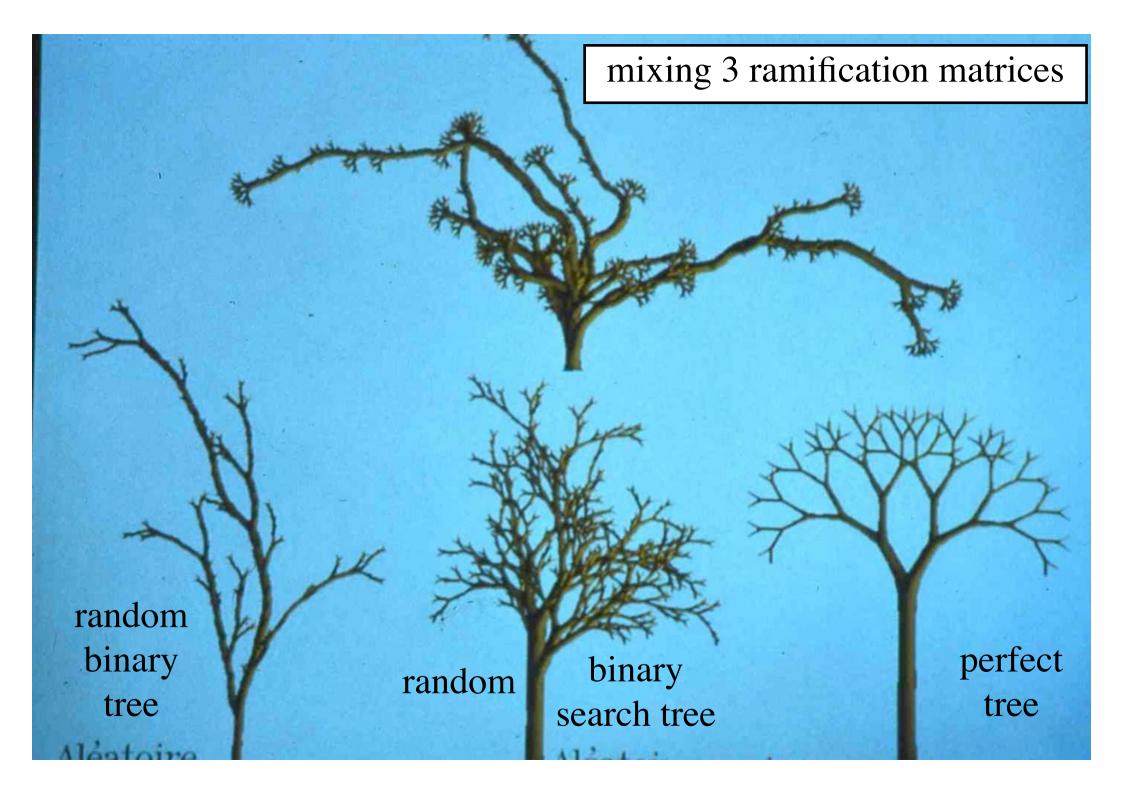
Arquès, Eyrolles, Janey, X.V. SIGGRAPH'89, IMAGINA' 90

Synthetic images of trees, leaves, landscapes... Arqués, Eyrolles, Janey, X.V.

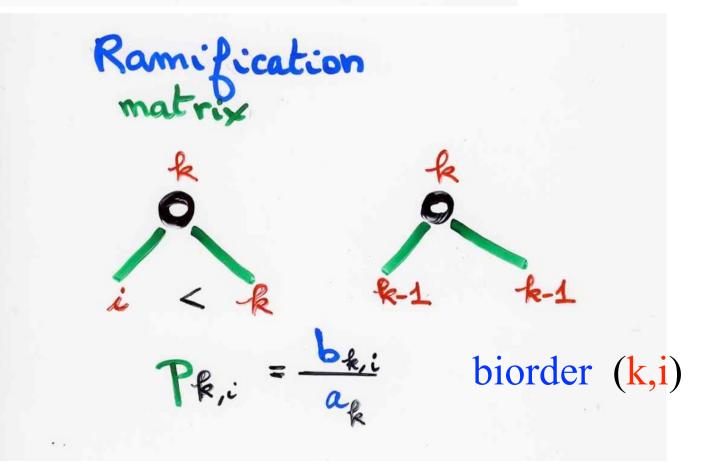


matrix of probabilities

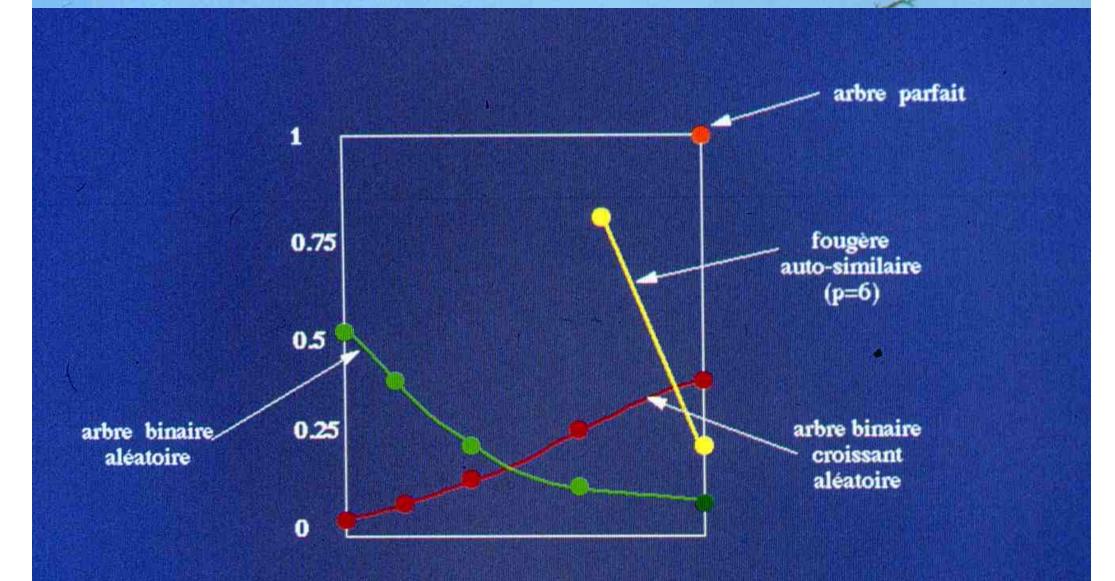




Synthetic images of trees, leaves, landscapes... Arqués, Eyrolles, Janey, X.V.



matrix of probabilities

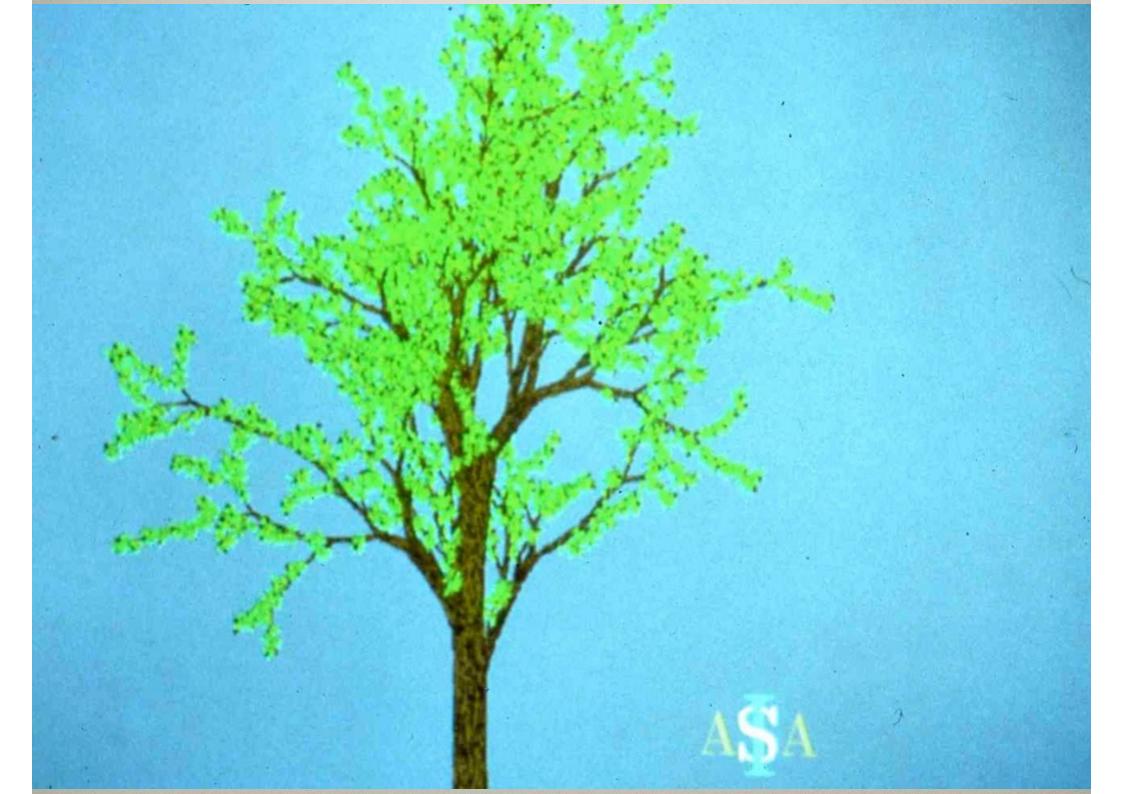


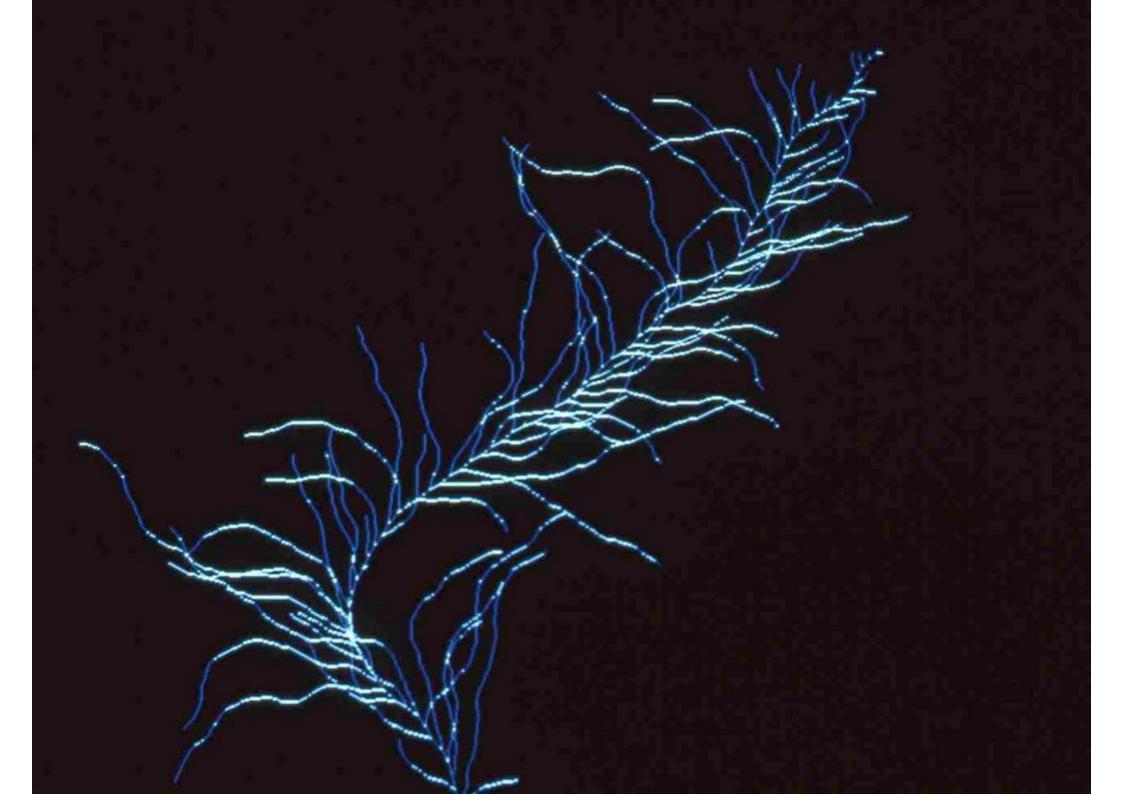
matrices de ramification auto-similaires

mixing 3 ramification matrices

3 «shapes»

1:0	0	10000	10000				1				
5 : 5000 6 : 5000 7 : 125	2500	1250	625 625 1000	313	312 3000	3125					
8 : 63 9 : 31 10: 15	125 63 31	250 125 63	500 250 125	1000 500 250	2000 1000 500	1000	3000 2000.	3031 3000	3016		
11:7	15	31	63	250	125	500	1000	2000	3000	3009	





If there exist some beauty in these synthetic images of trees, it is only the pale reflection of the extraordinary beauty of the mathematics hidden behind the algorithms generating these images

average Strahler number over binary trees n' vertices St = log n + f(log n) + Q(1) Flagolet, Raoult, Vuillemin (1979) periodic

Numbers theory

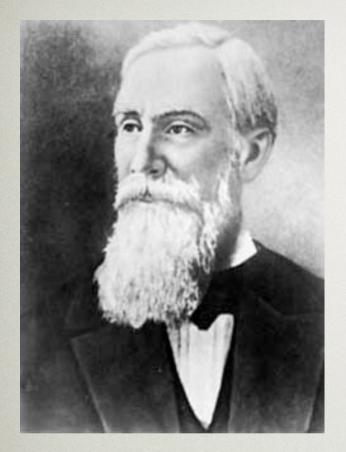
T(n) = number of 1's in the binary expansion of 1,2,..., (n-1)

generating function S_{n,k} = nb of (complete) binary trees B n (internal) vertices Strehler nb St(B)= k

 $S_k(t) = \sum_{n,k} S_{n,k} t^n$

formal power series

 $S_{1} = 1$ $\frac{t}{2} = \frac{t}{1-2t}$ $S_3 = \frac{t^3}{1 - 6t + 10t^2 - 4t^3}$ $S_4 = \frac{t^7}{1 - 14t + 78t^2 - 220t^3 + 330t^4 - 252t^5 + 84t^4 - 8t^7}$



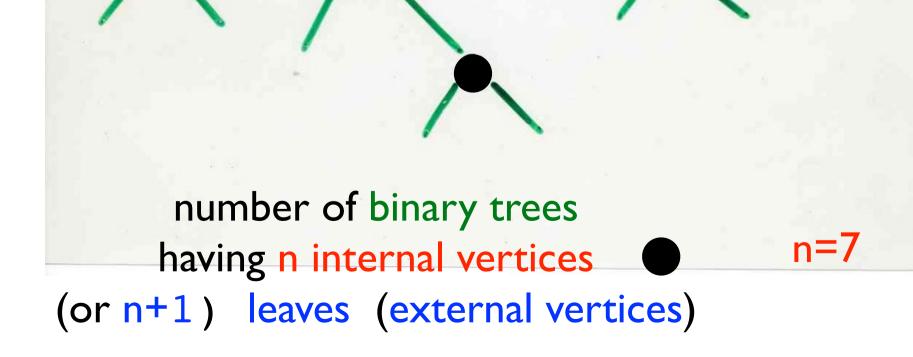
Chebyshev polynomials

trigonometry

 $sin(n+1)\Theta = (sin\theta)U_n(cos\theta)$

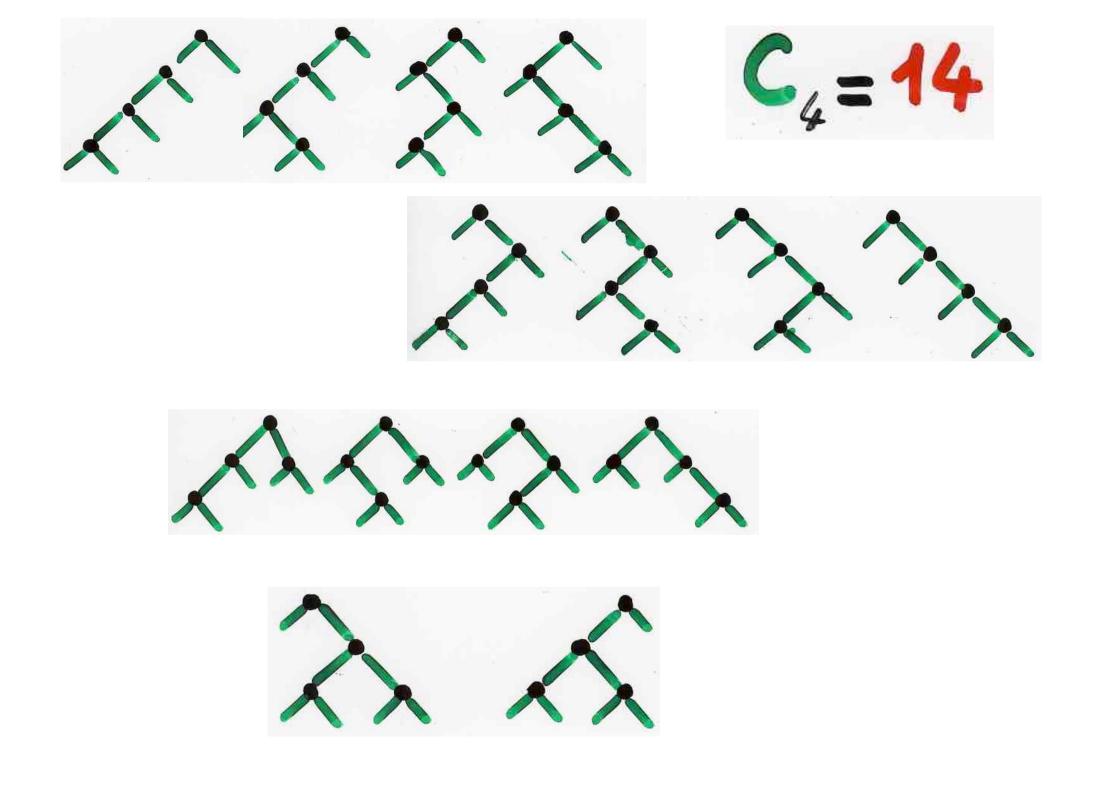
Pafnuty Chebyshev (1887-1920)

Counting trees ...

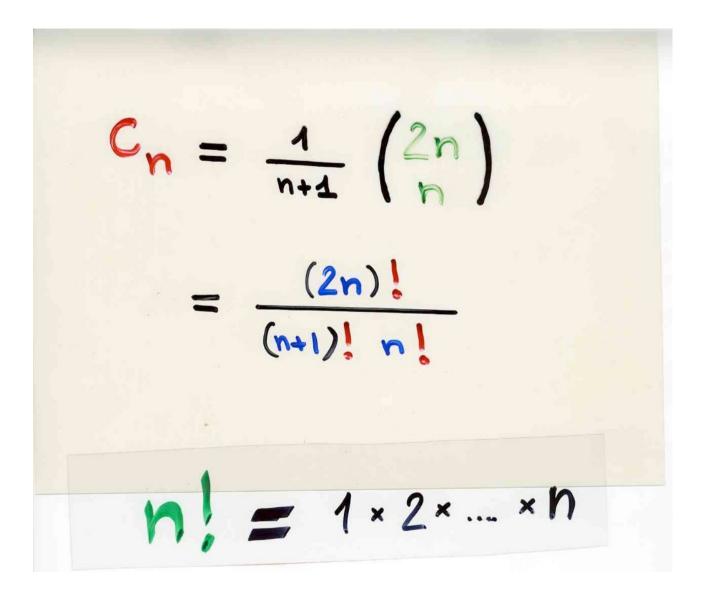


Binary tree

 $\frac{1}{2} \frac{1}{2} \frac{1}$



Catalan number



1 1 2 5 14 42

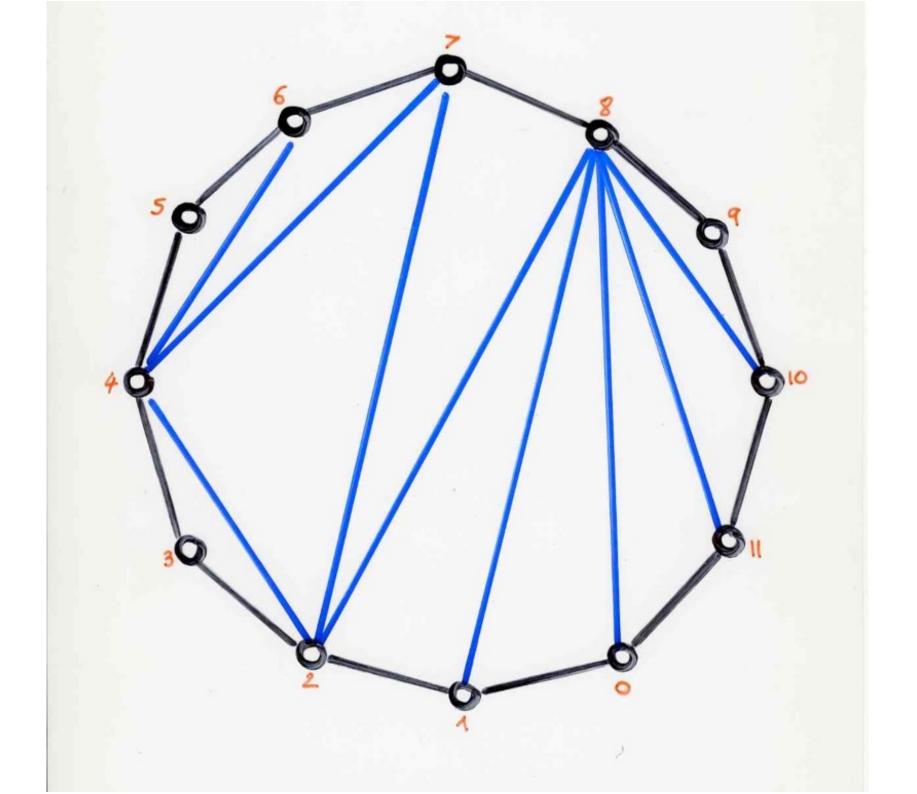
Catalan numbers

E. Catalan (1814-1894)

fill and she has and & the first the getting of the Anna his an Aufral hing & Diegonale in & Jorangela Jula int high has and 14 Lighter Calm grifafin This if his hay generaliter. I in Jolygonian In n finty find n-3 Diagonala in n-2 Griangula firstentty had, and his hilasling hoppedan ach ... filited got for have. Auguid with difer like happing Action = x bann n = 1,2,5,14,42,132,429,1430, to fait ist 5 14. 42, 152, 429, 14. 1.11 Firmer fab if In file powerft. In generalite 1 , 8. 22. (An-10) = 2.6.10.14.1 (n+1)!n!X = 2.3 A. 5. 6. 7 (A-1) $C_{n} \equiv \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}^{l_{n}} \frac{1}{2} \int \frac{1}{2}$

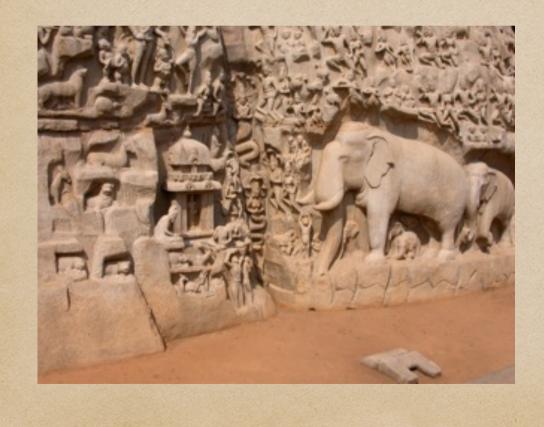
A letter from Leonhard Euler to Christian Goldbach

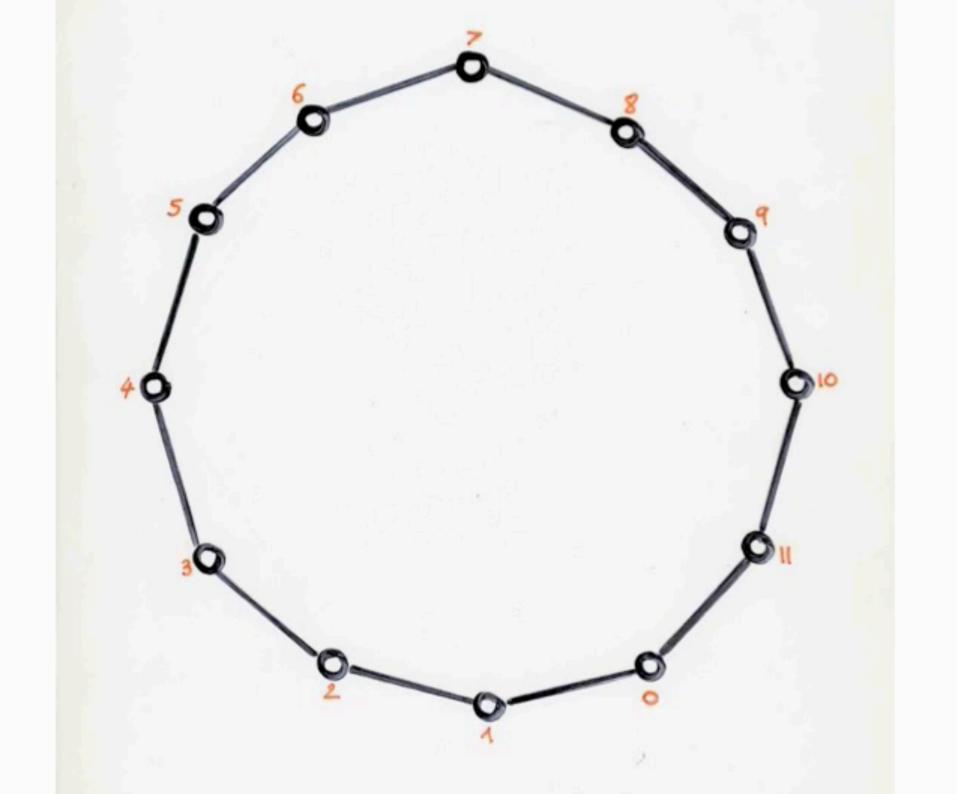
Berlín, 4 September 1751



Re Aroperis 1 - 2a-Ciff is wift. In the 2a 2a+5a+14a+42a+132a+ etc 1-2a-V(1-4a) 1+ 2+ A20 + 1020 + eh = She Pit to many lefter it for Hunding of bogungail gas · Cu sul of fair . An Sfr. fin lang for Non Boghoslan form 175-Sept

from triangulations to binary trees

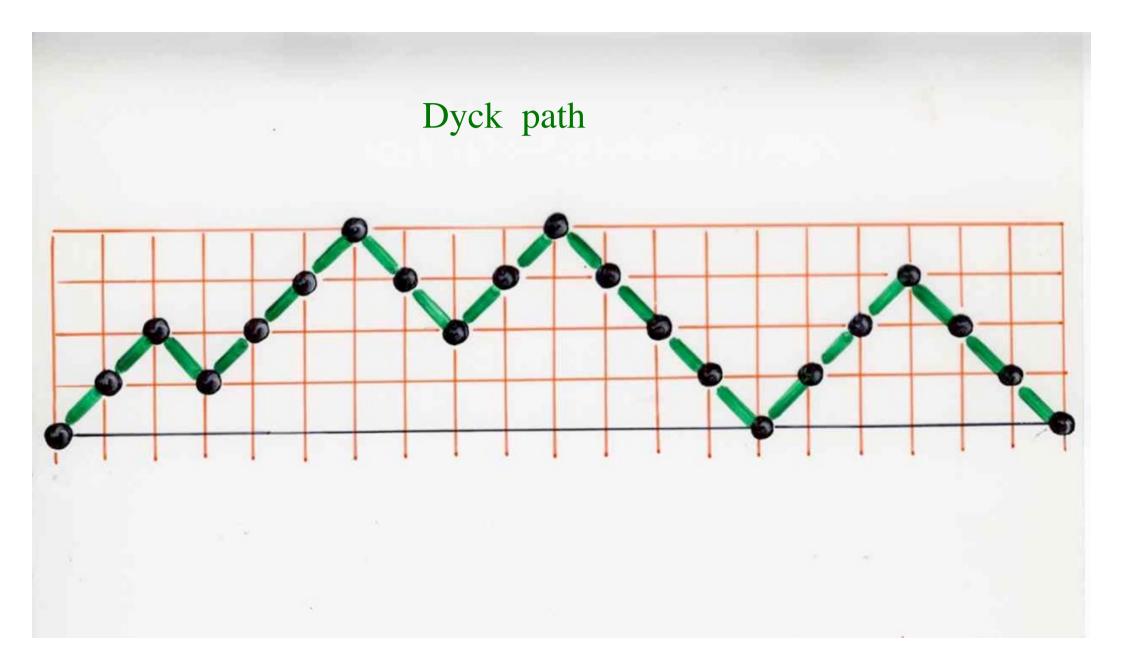




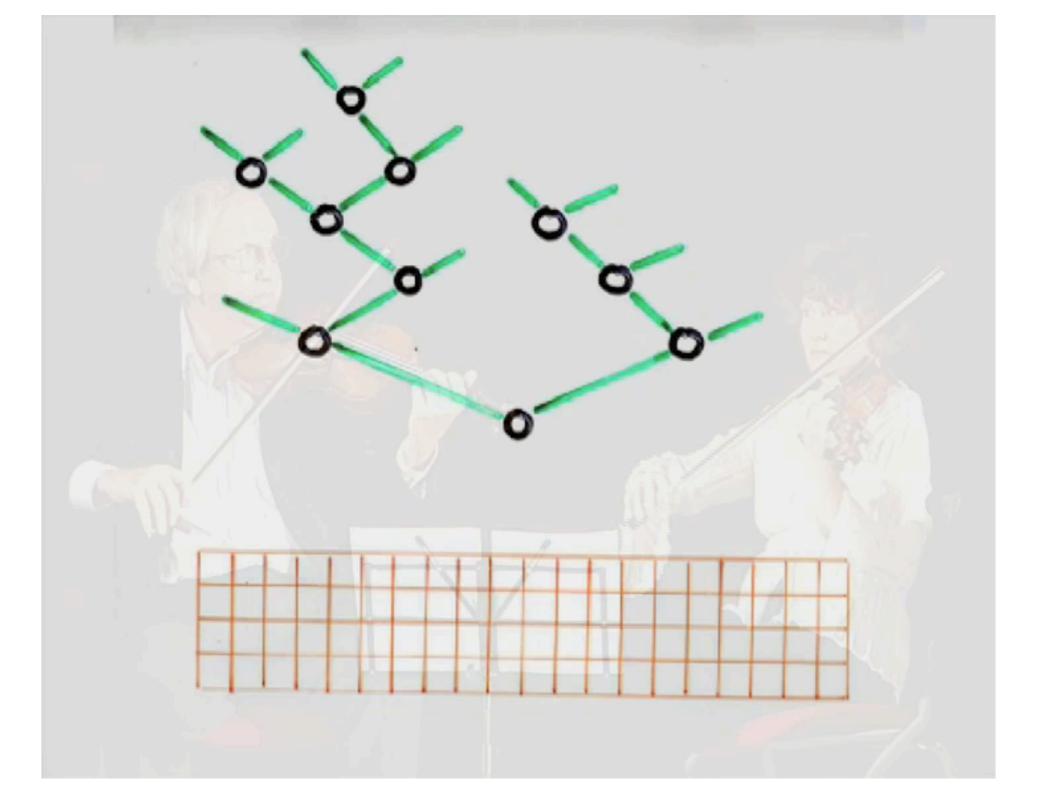
How to prove the relation between the distribution of Strahler numbers and Chebyshev polynomials ?

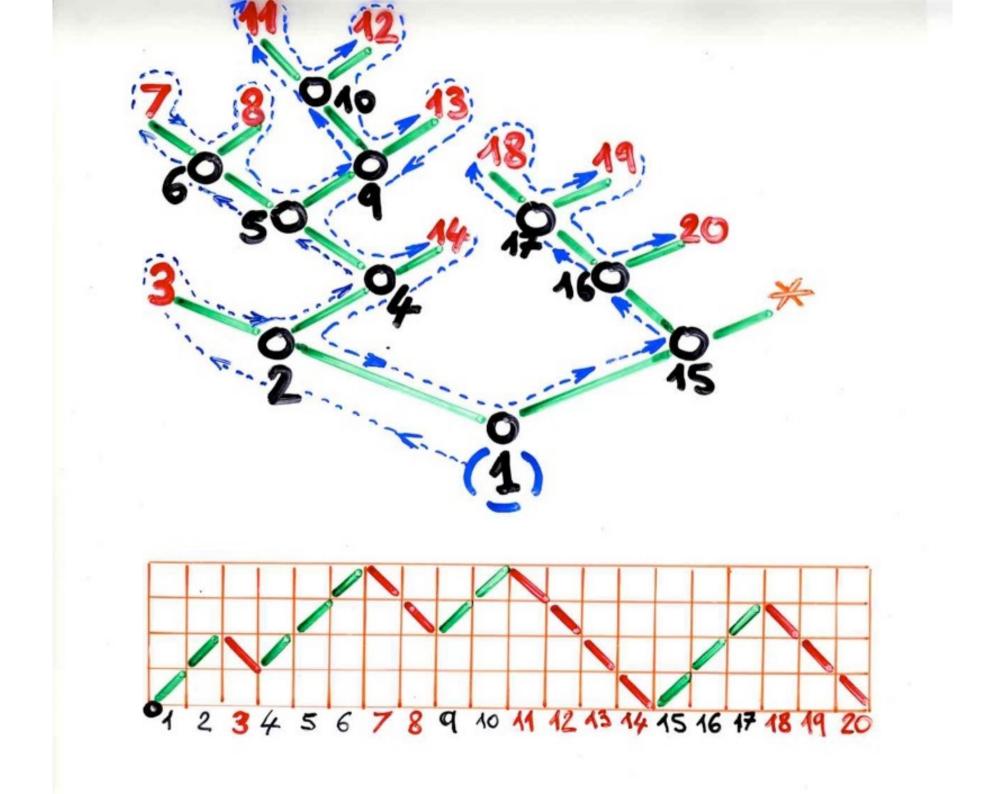
 $S_{k}(t) = \sum_{k \neq 0} S_{n,k} t^{n}$

 $sin(n+1)\Theta = (sin\theta)U_n(cos\theta)$

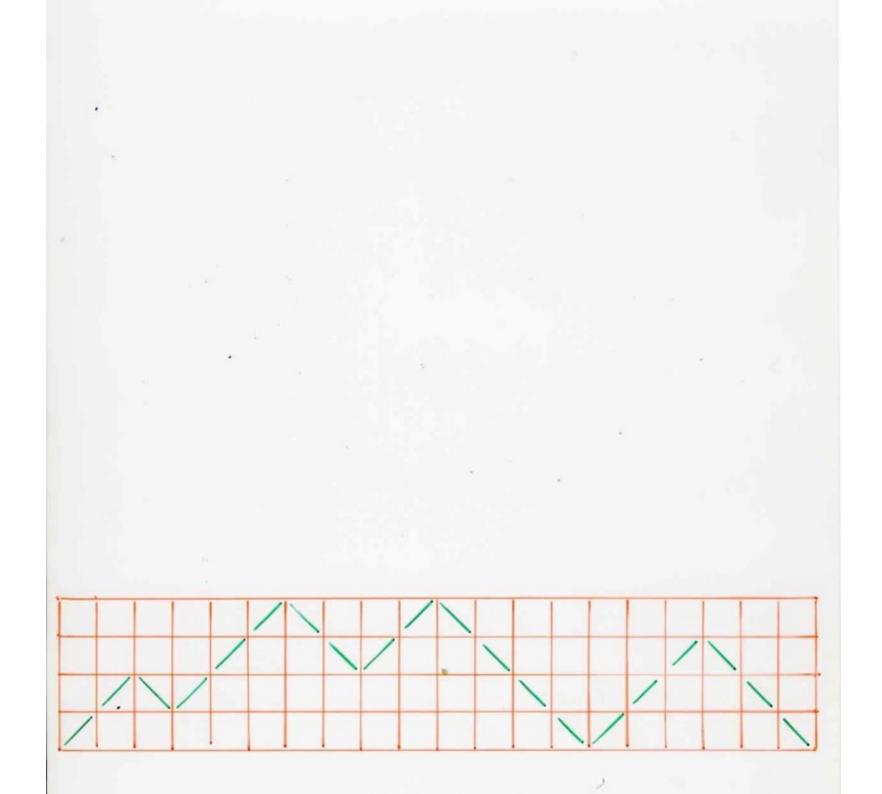


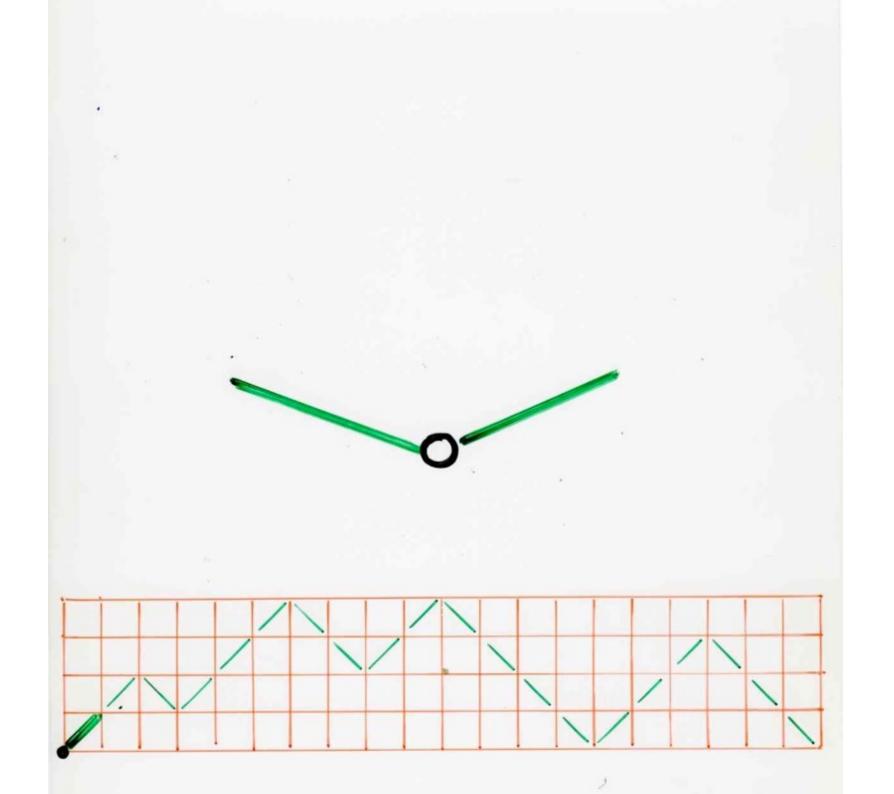
from binary trees to Dyck paths

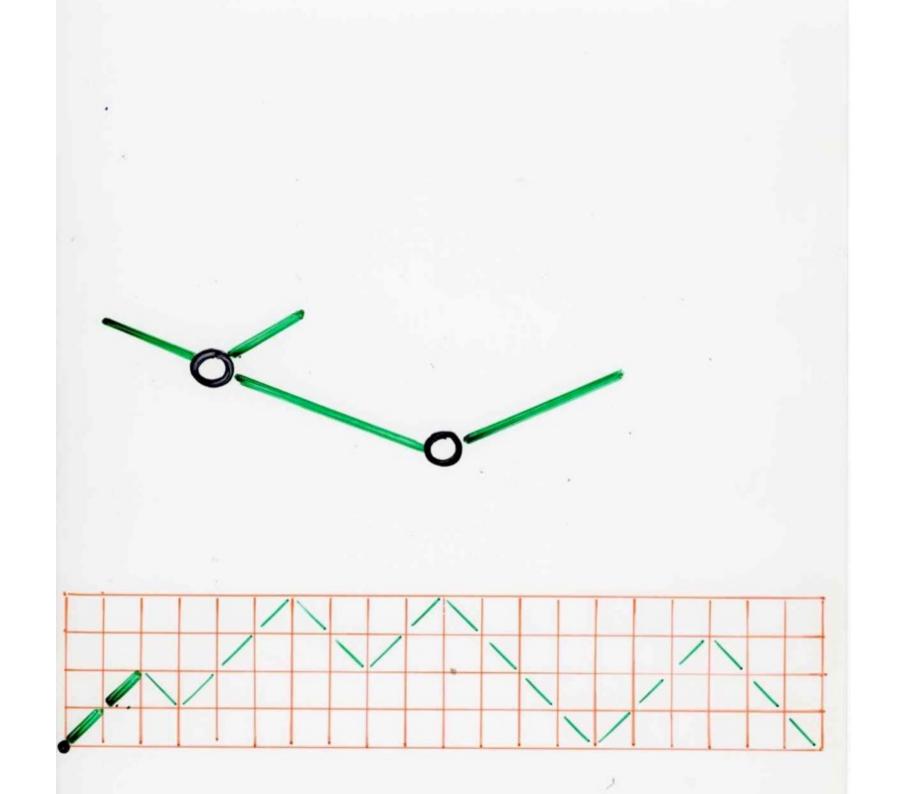


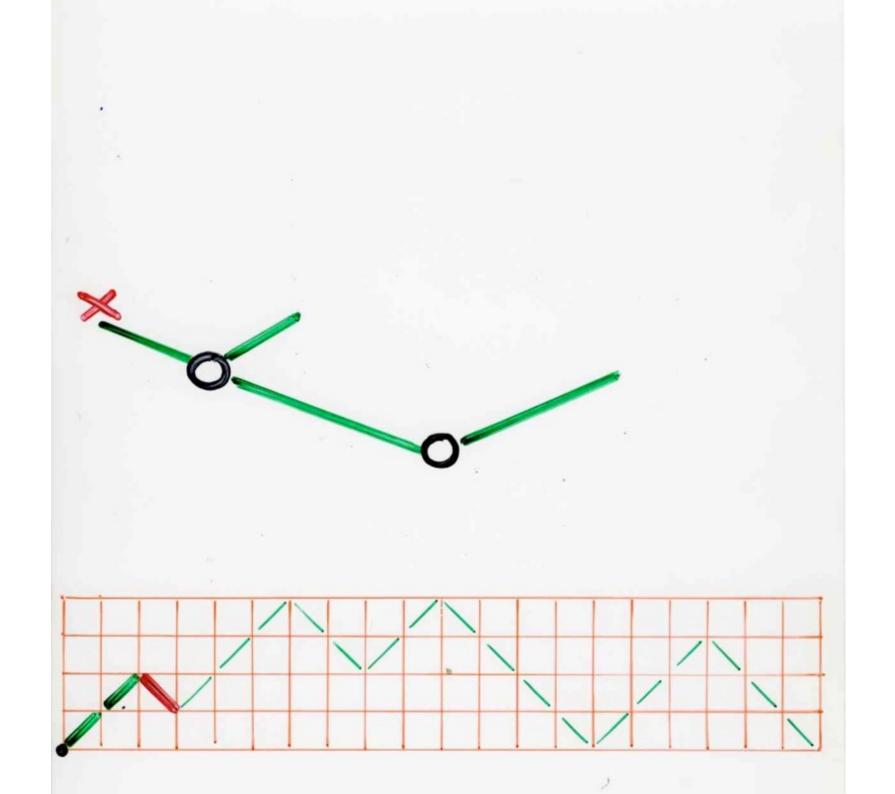


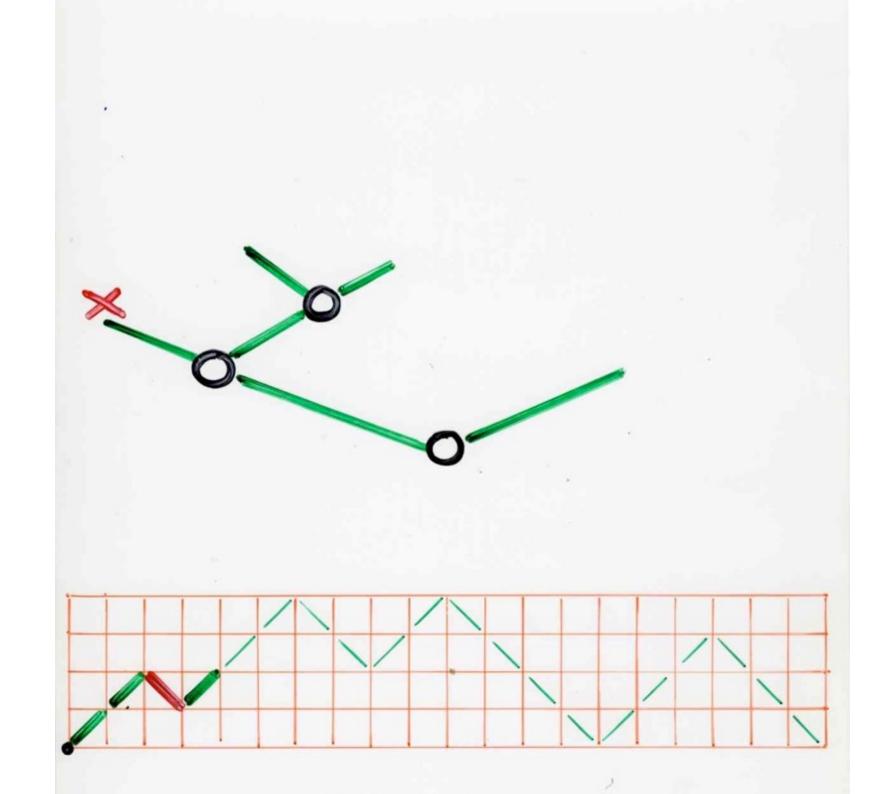
reciprocal bijection

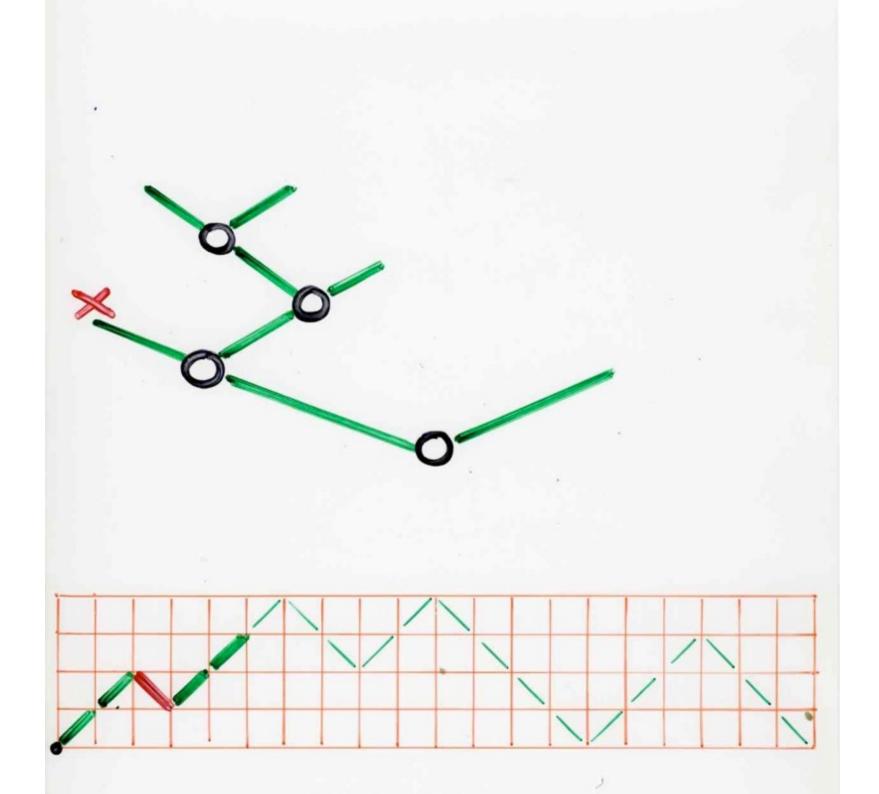


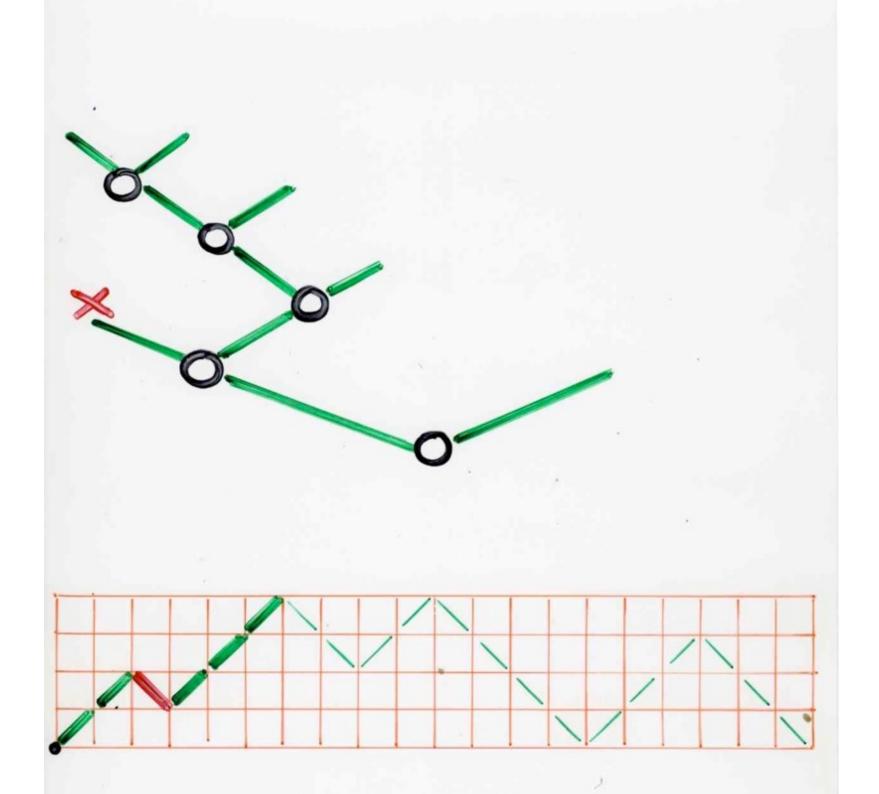


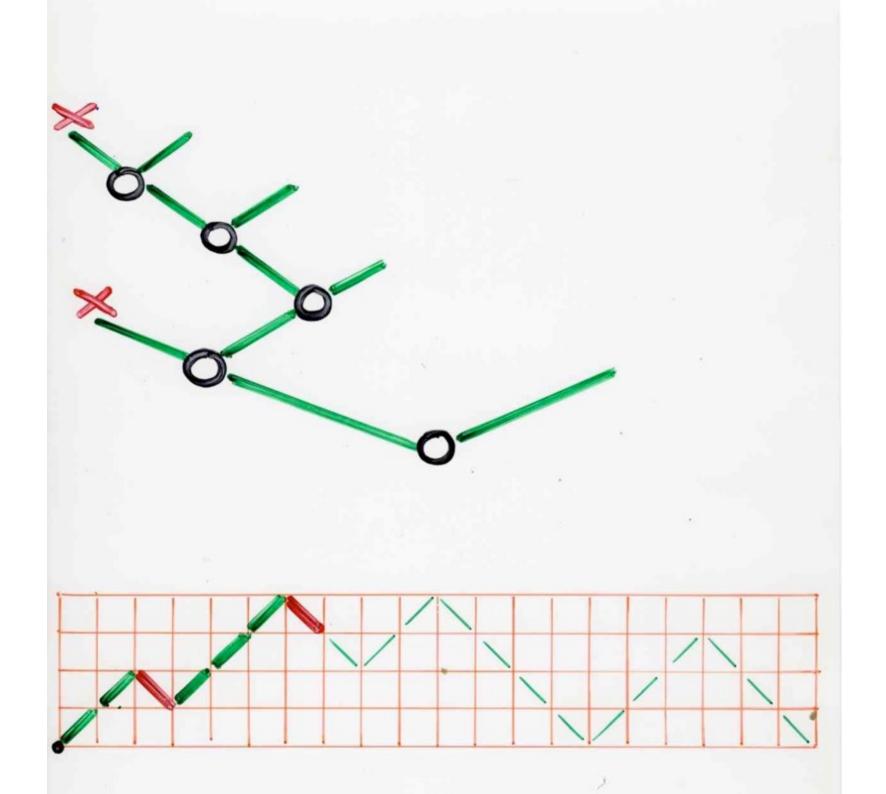


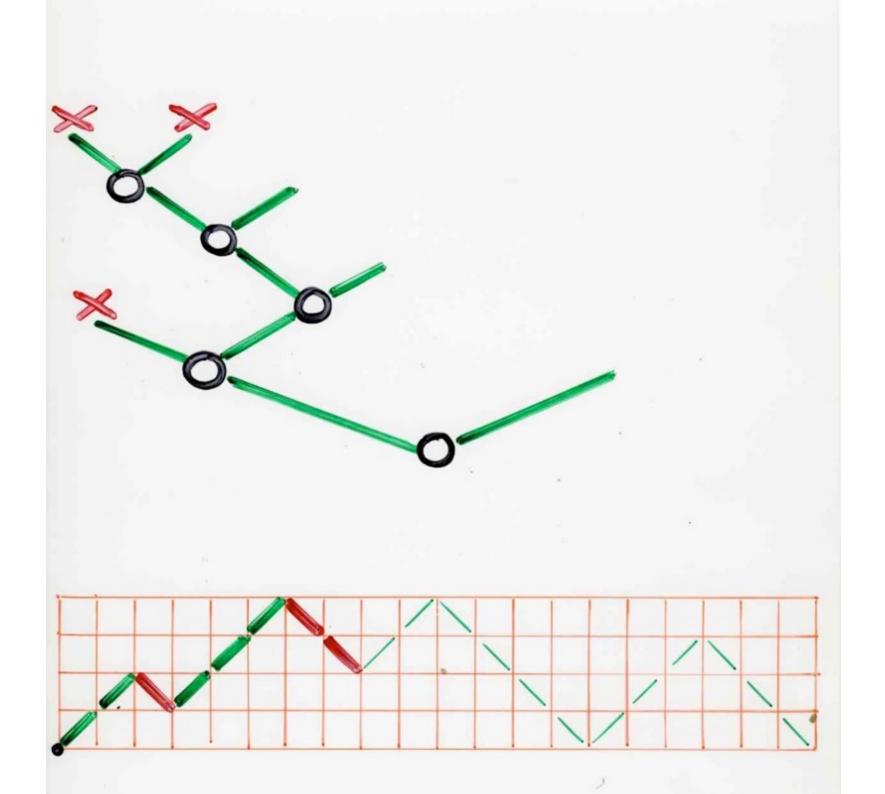


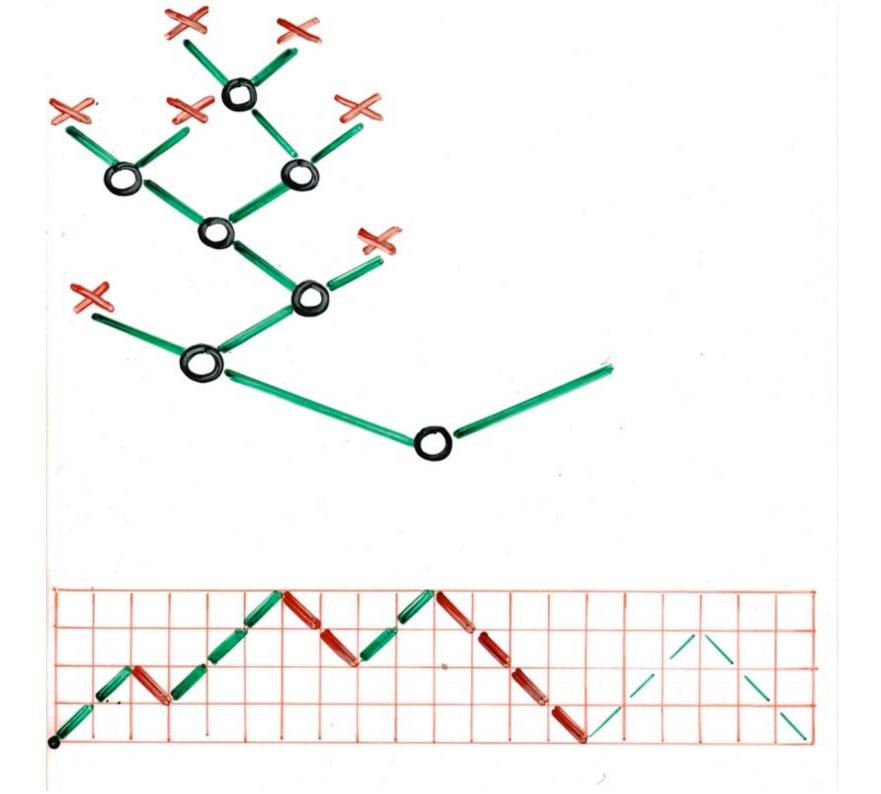


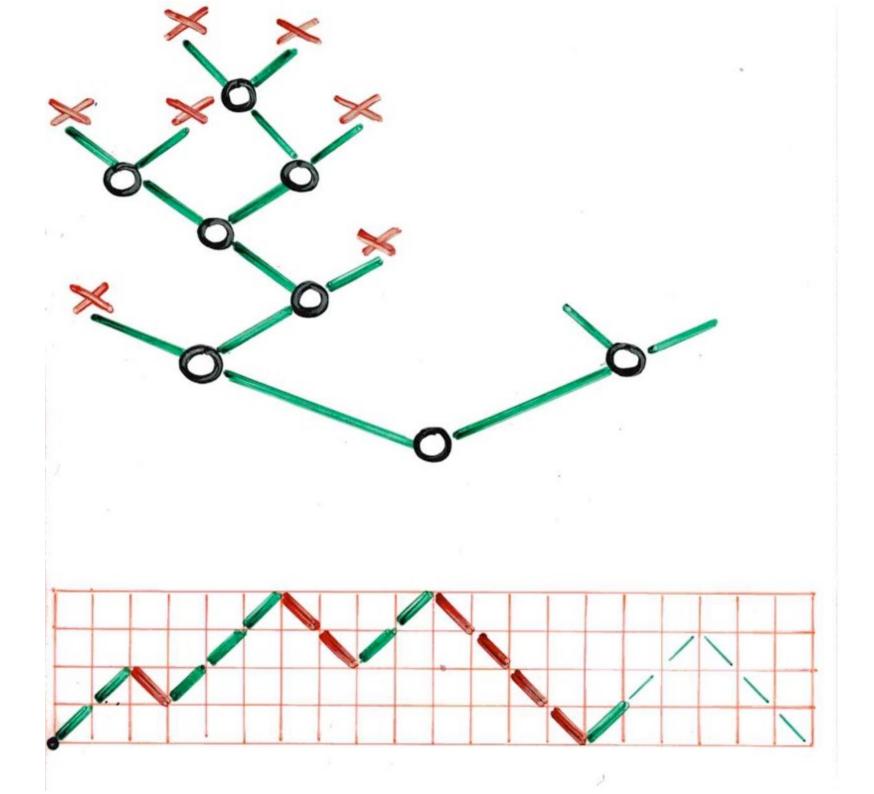


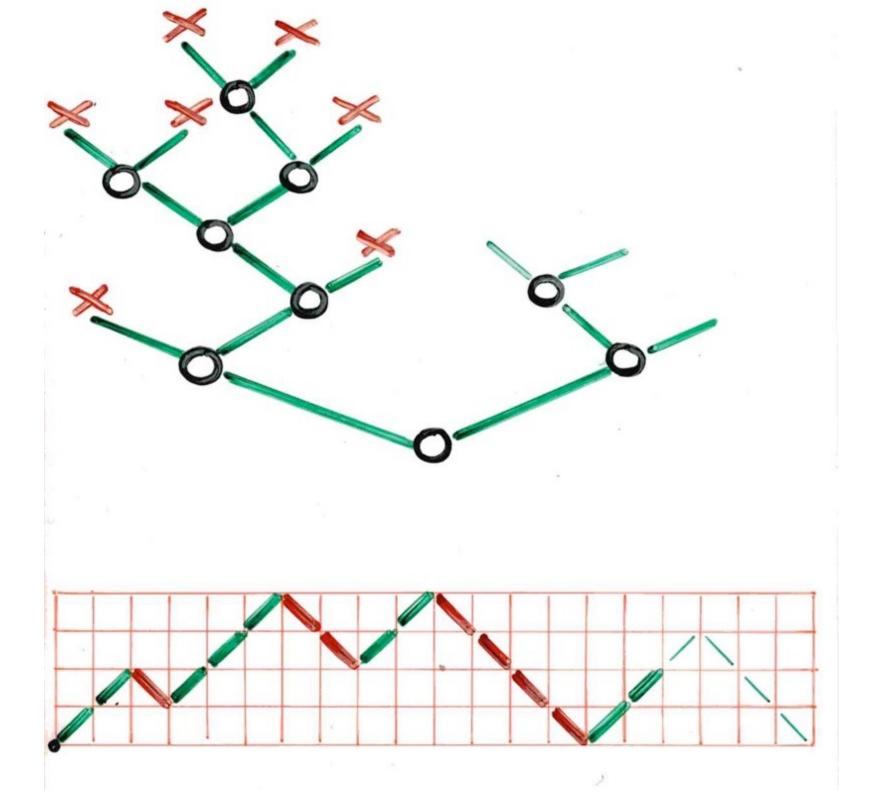


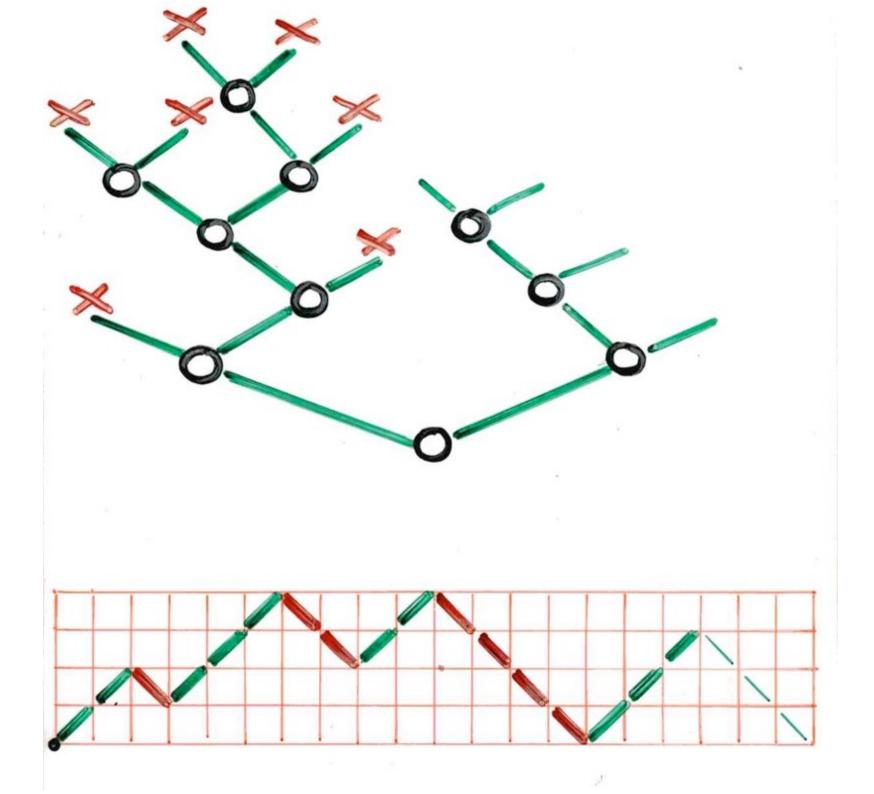


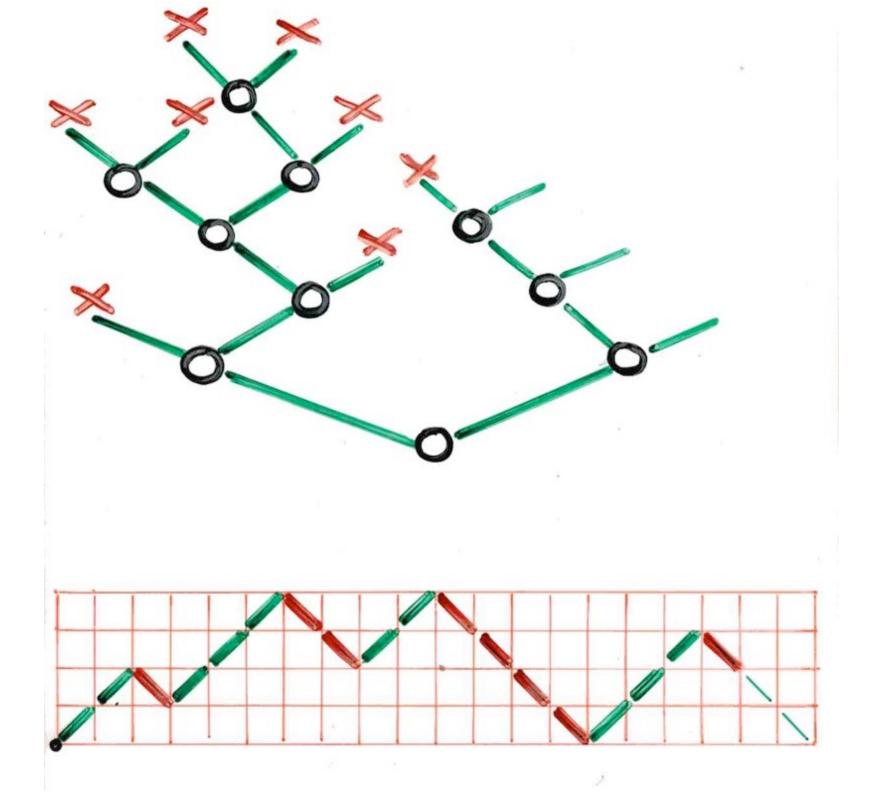


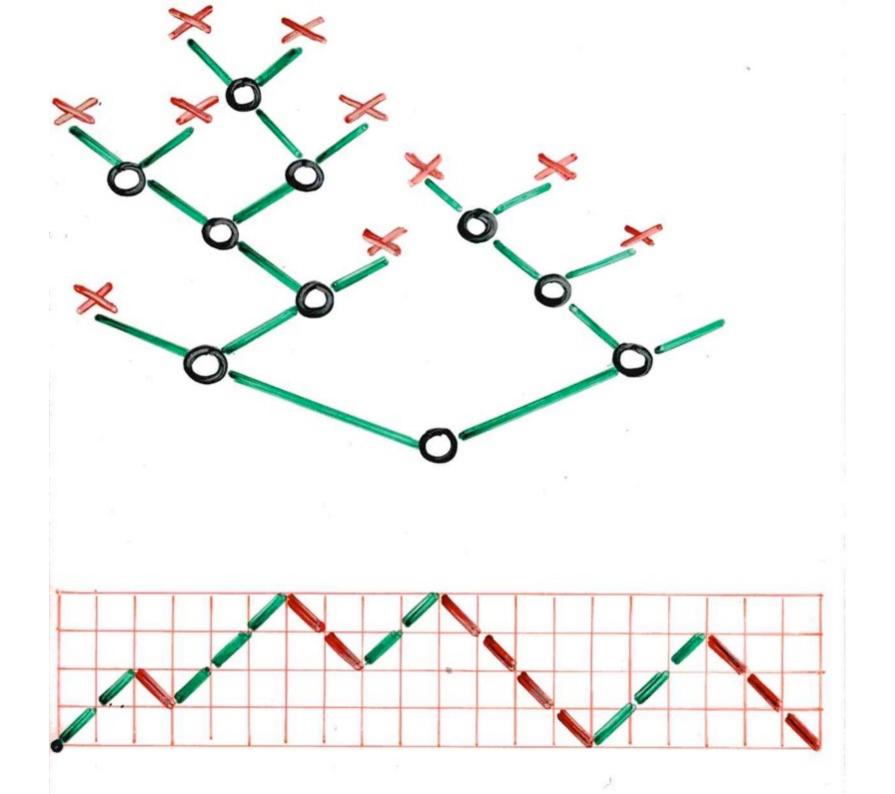


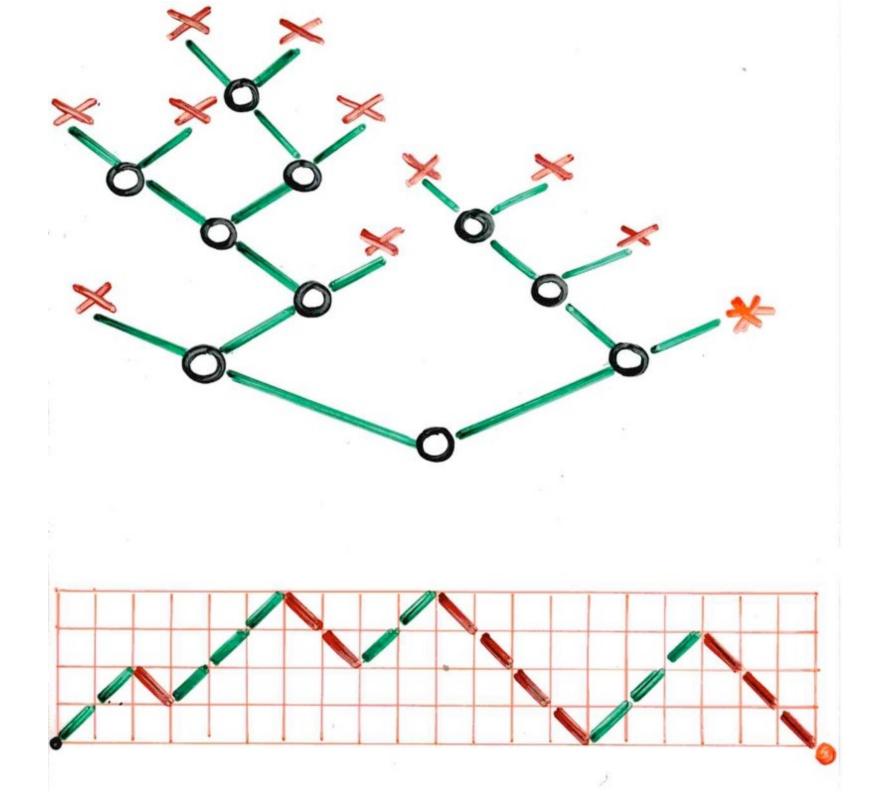




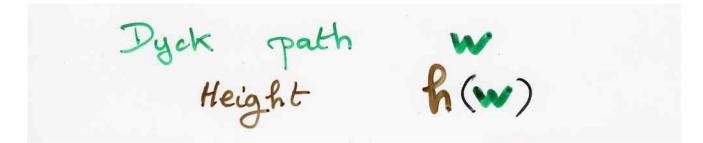


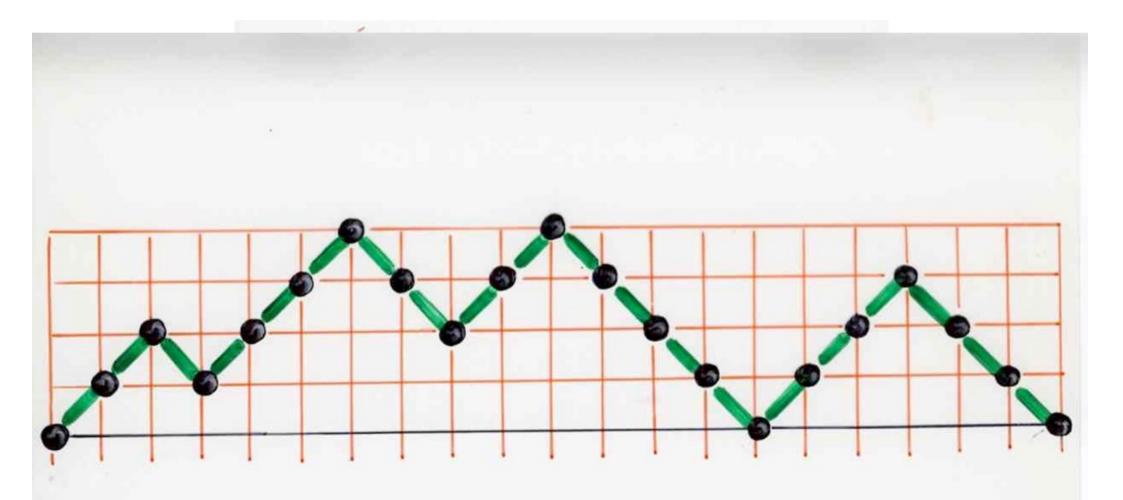




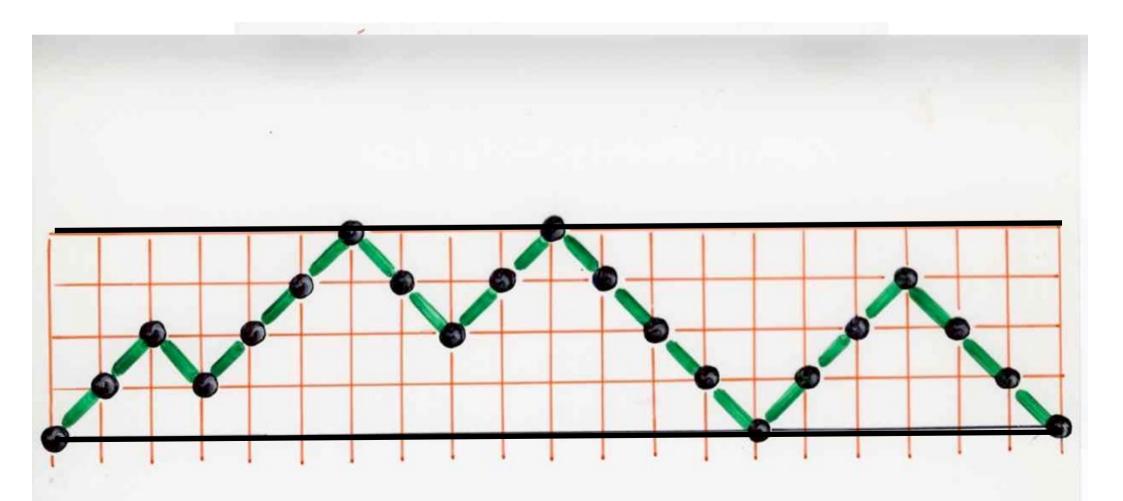


logarithmic height

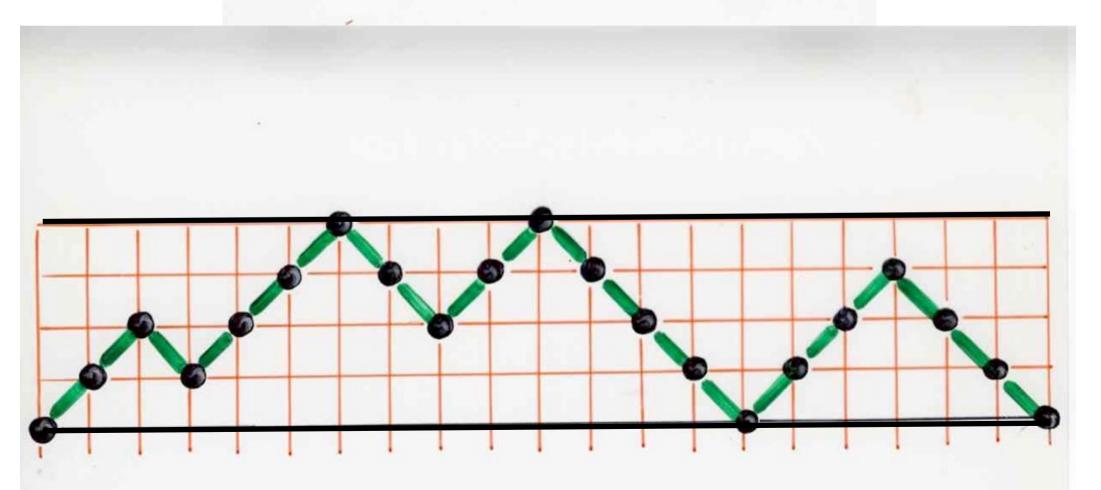




Dyck path w Height h(w) = 4



Dyck path W Height h(w) logarithmic height lb (w) = L log2 (1+h(w))]



(complete) binary trees Franson Dyck paths n (internal) vertices (1984) length 2n Strahler nb = k log. height lh(w) = k(complete)

same distribution !

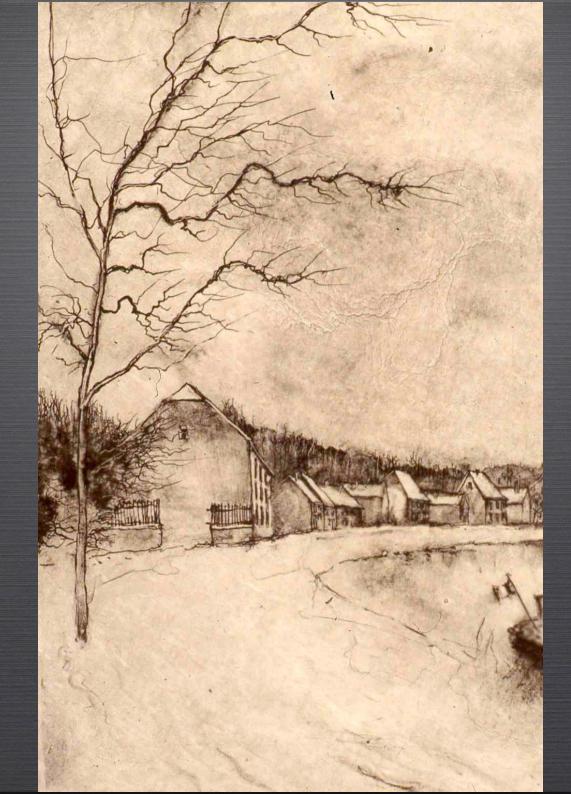
average Strahler number over binary trees n' vertices St = log n + f(log n) + O(1) Flajolet, Raoult, Vuillemin (1979) periodic

ramification matrices

or mathematical analysis for the shape of a branching structures

How to «measure» the shape of a tree?

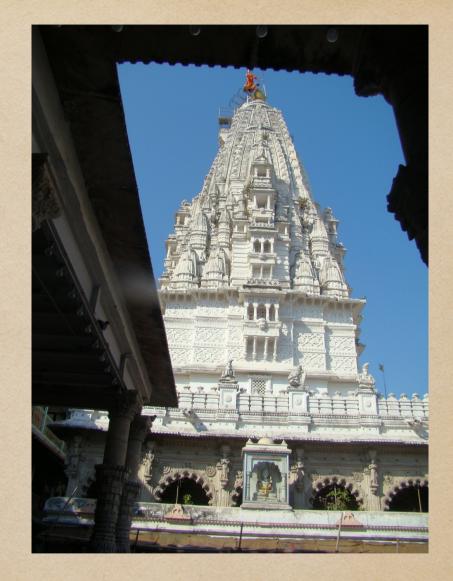
Bernard Gantner



ARBRES AUX CORBEAUX

LOUVRE MUSEUM

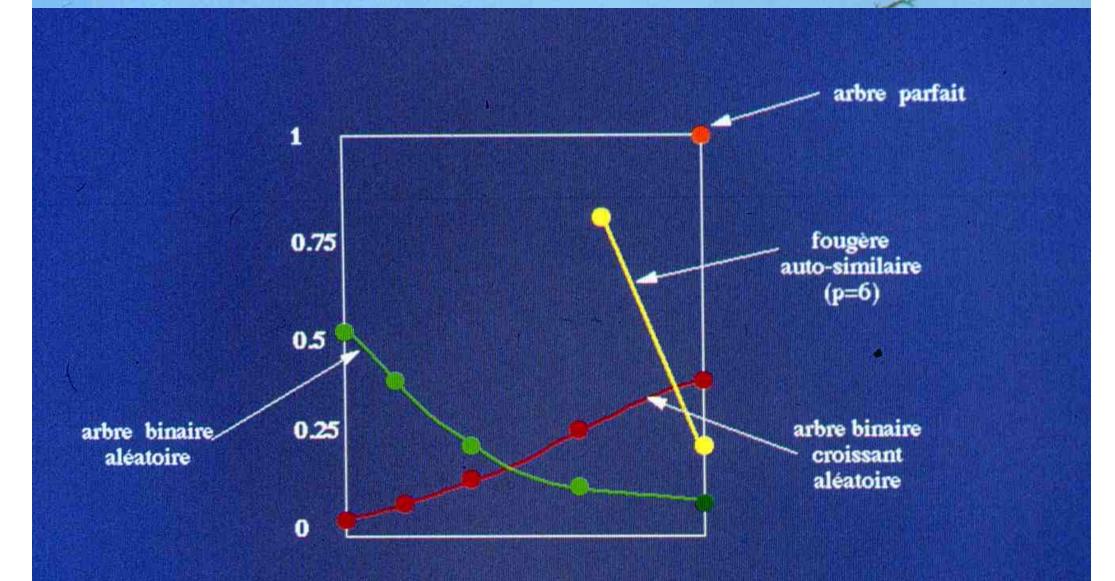
ramification matrices in physics



digitous fingering

DLA

Diffusion Limited Agregation



matrices de ramification auto-similaires

Classification of Galactograms with ramification matrices P. Bakic, M. Allert, A. Maidment (2003) Digital mammography

Academic Radiology, Vol 10, No 2, February 2003

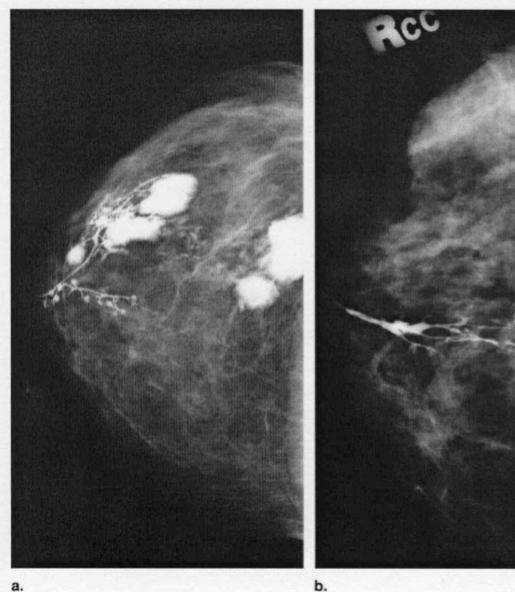


Figure 4. Two examples of galactograms that have been correctly classified by means of R matrices. (a) Galactogram with no reported findings (patient age, 45 years; right CC view; $r_{3,2} = 0.5$ and $r_{3,3} = 0.19$). (Large bright regions seen in this galactogram are due to extravasation, which did not affect the segmentation of the ductal tree.) (b) Galactogram with a reported finding of cysts (patient age, 55 years; right CC view; $r_{3,2} = 0.33$ and $r_{3,3} = 0.67$).

Academic Radiology, Vol 10, No 2, February 2003

d.

CLASSIFICATION OF GALACTOGRAMS

		A A A A A A A A A A A A A A A A A A A		
a.	<u>р.</u> г. ј	[c.	
R =	$\begin{bmatrix} r_{2,1} & r_{2,2} & \cdot & \cdot \\ r_{3,1} & r_{3,2} & r_{3,3} & \cdot \\ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{bmatrix} =$	$\left \begin{array}{cccc} 0.43 & 0.57 & . \\ 0 & 0.33 & 0.67 \\ 0 & 0.75 & 0 \end{array}\right $		

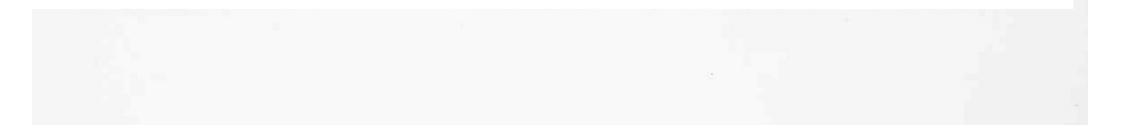
Figure 1. Segmentation of a ductal tree, showing (a) part of a galactogram with a contrast-enhanced ductal network, (b) the manually traced network of larger ducts from the contrast-enhanced portion of the galactogram, (c) numeric labeling of branches in the ductal network, and (d) the R matrix computed from the branching pattern. The dots, triangles, and squares denote branching points of different levels of the tree.

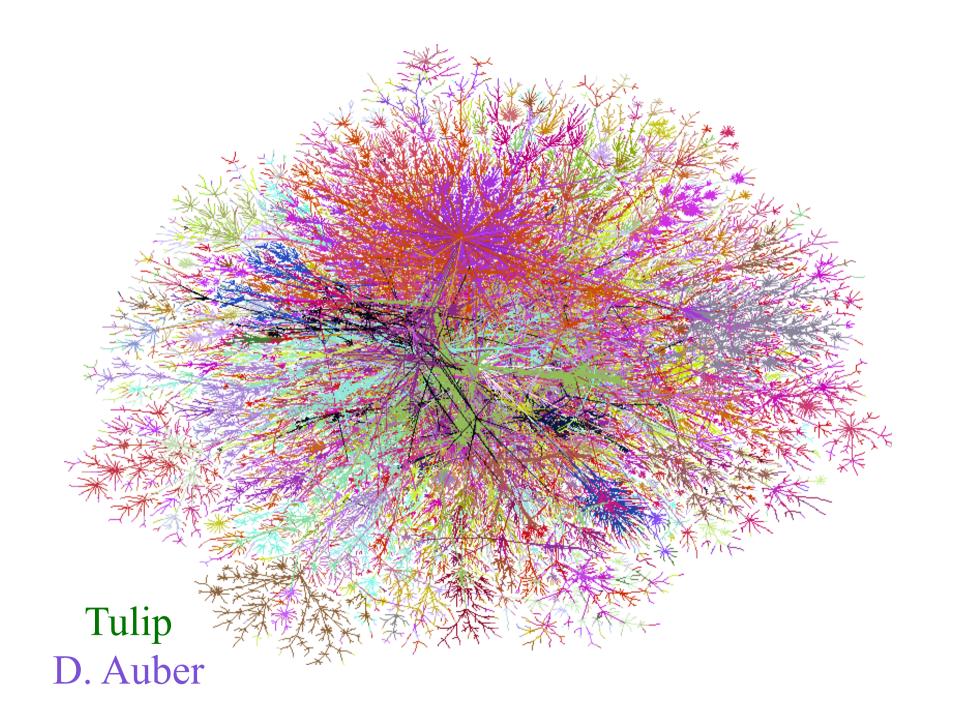
visualization of information

Visualization of information for very large graphs

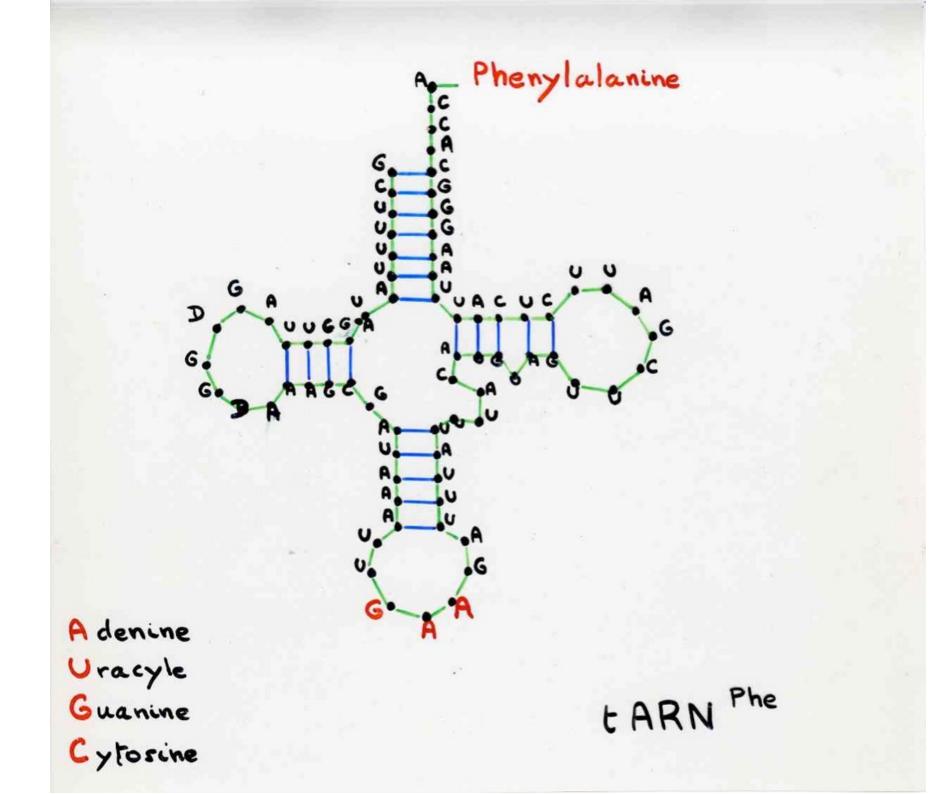
D. Auber, M. Delest Y. Chinicota, G. Merlangon, J.M. Fedou

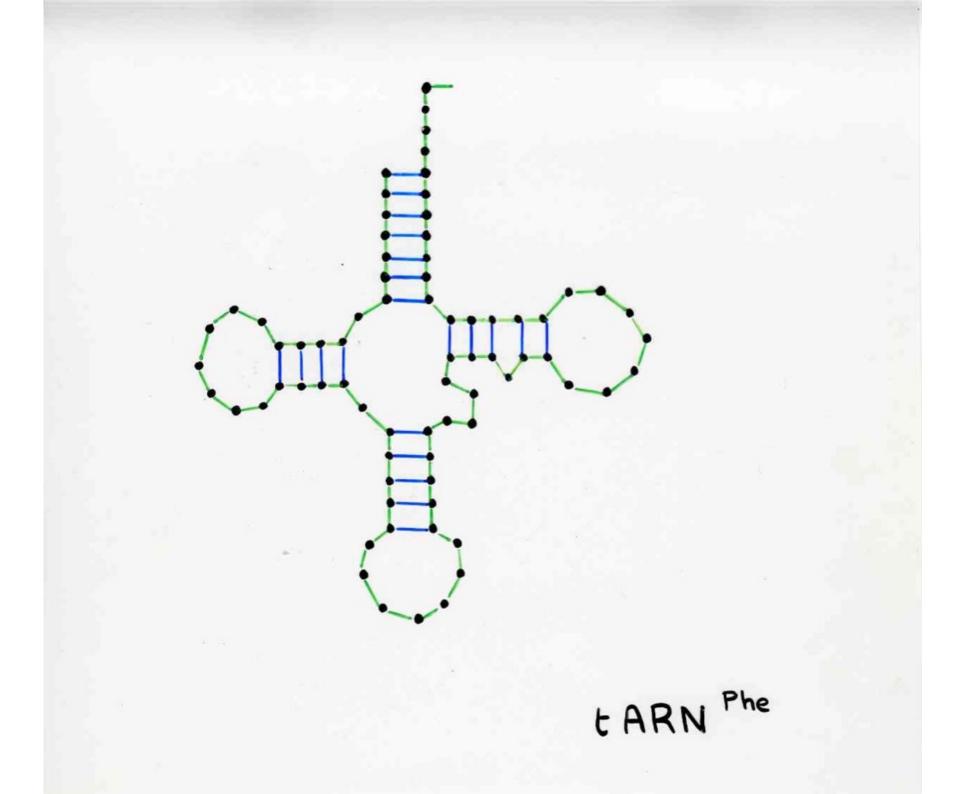
extension of Horton-Strahler analysis for graphs

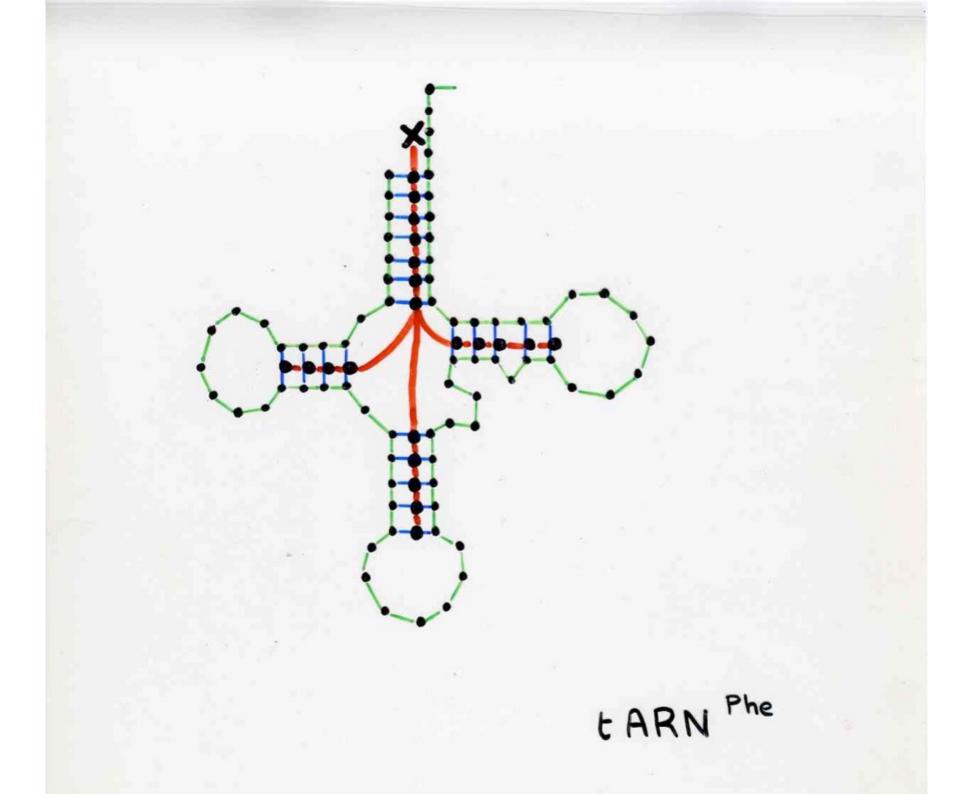


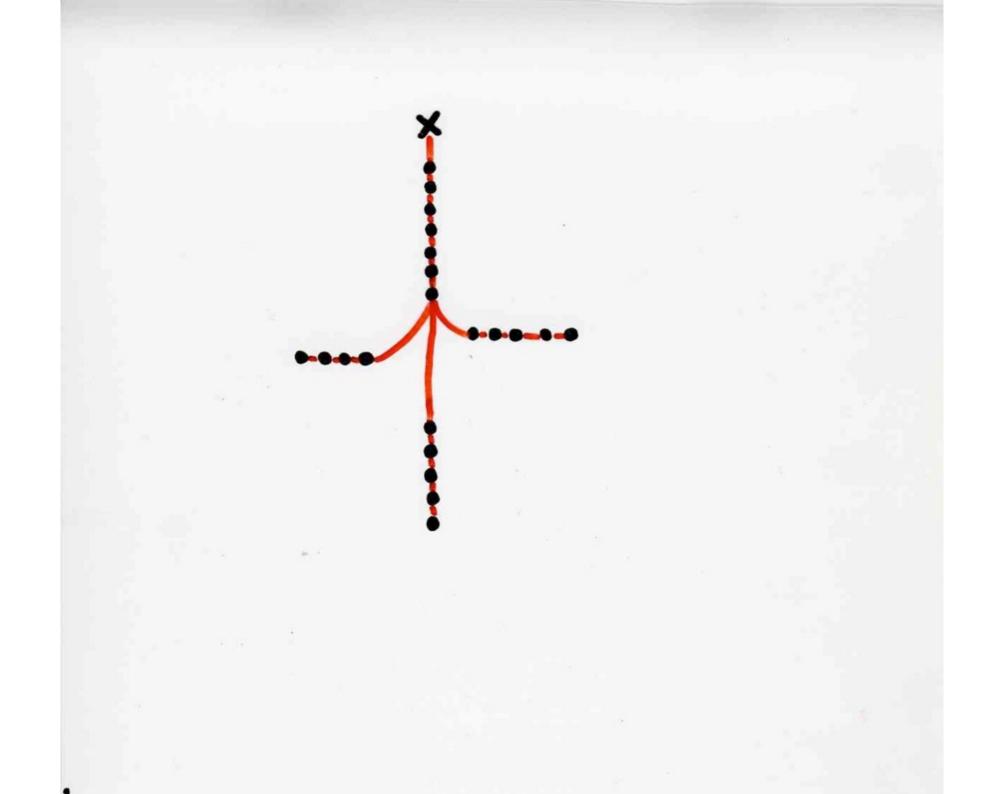


trees in molecules









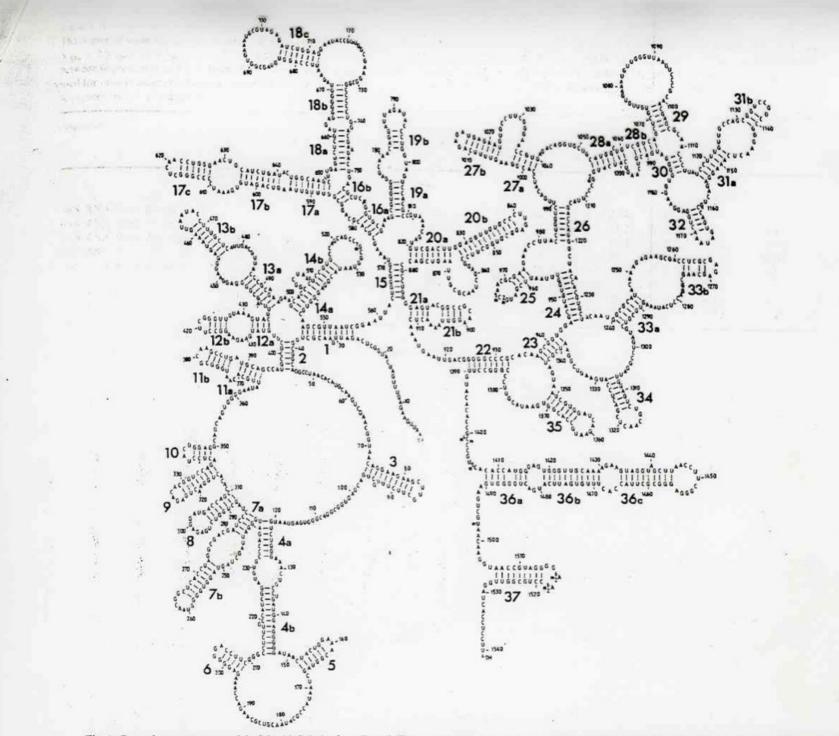


Fig. 1. Secondary structure model of the 16-S RNA from E. coli. This model has been fully described elsewhere [18]. The various secondary structure motifs are numbered for reference. Base-pairings 2 and 23 are included in this up-dated scheme and slight modifications have been introduced into helices 18 b and 33 b

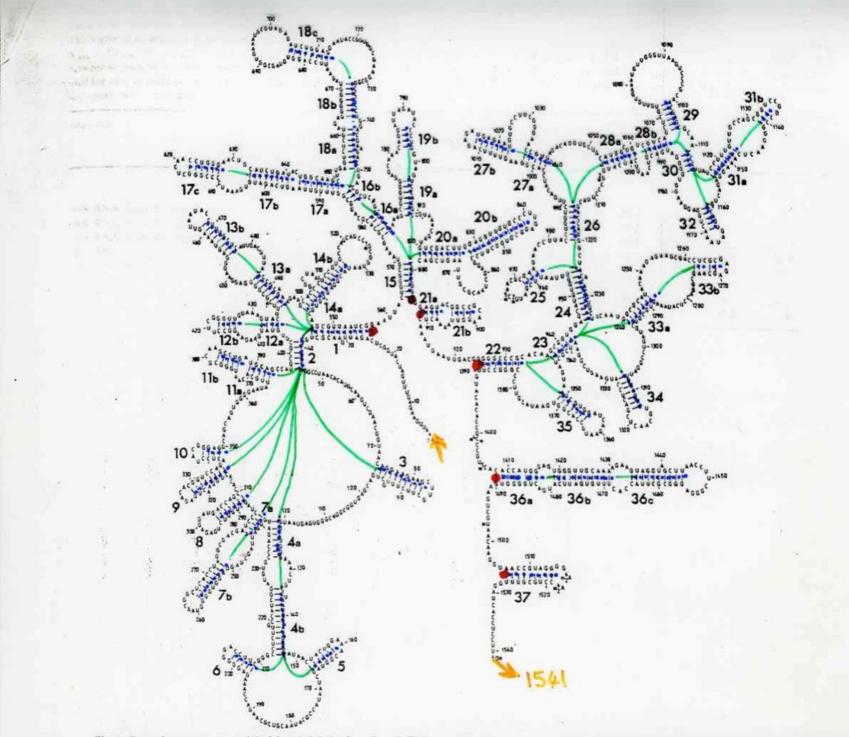
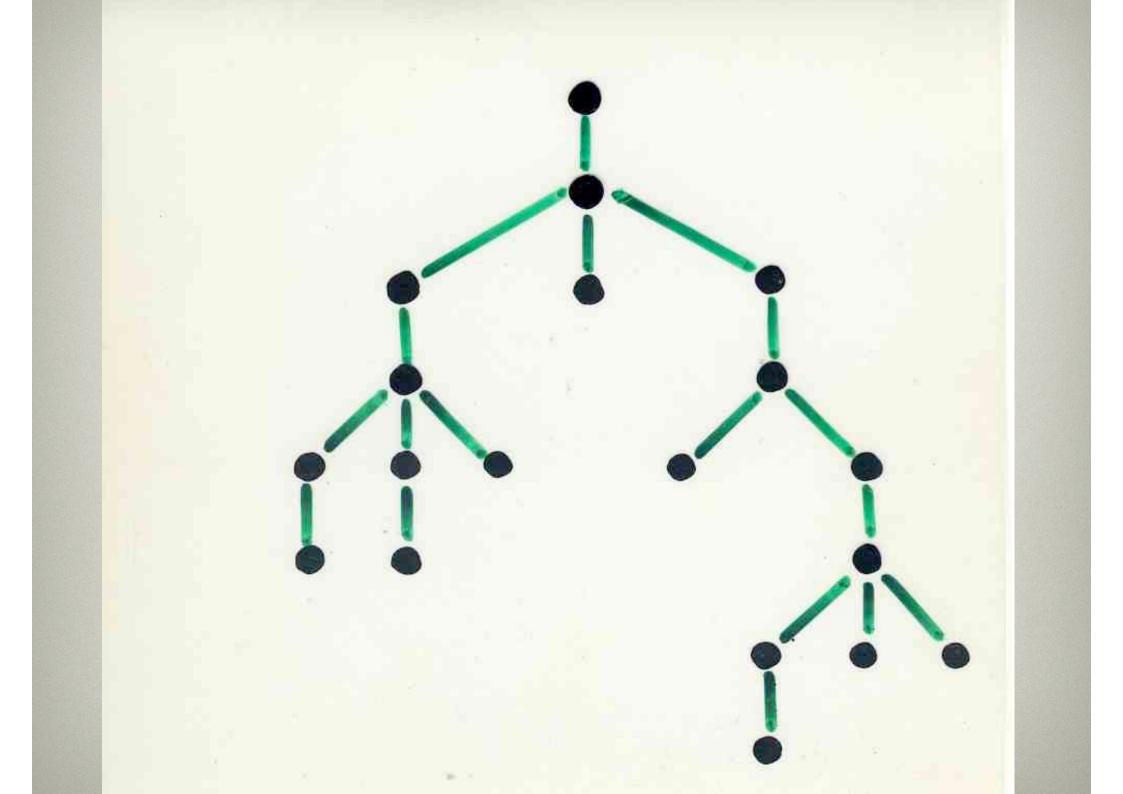
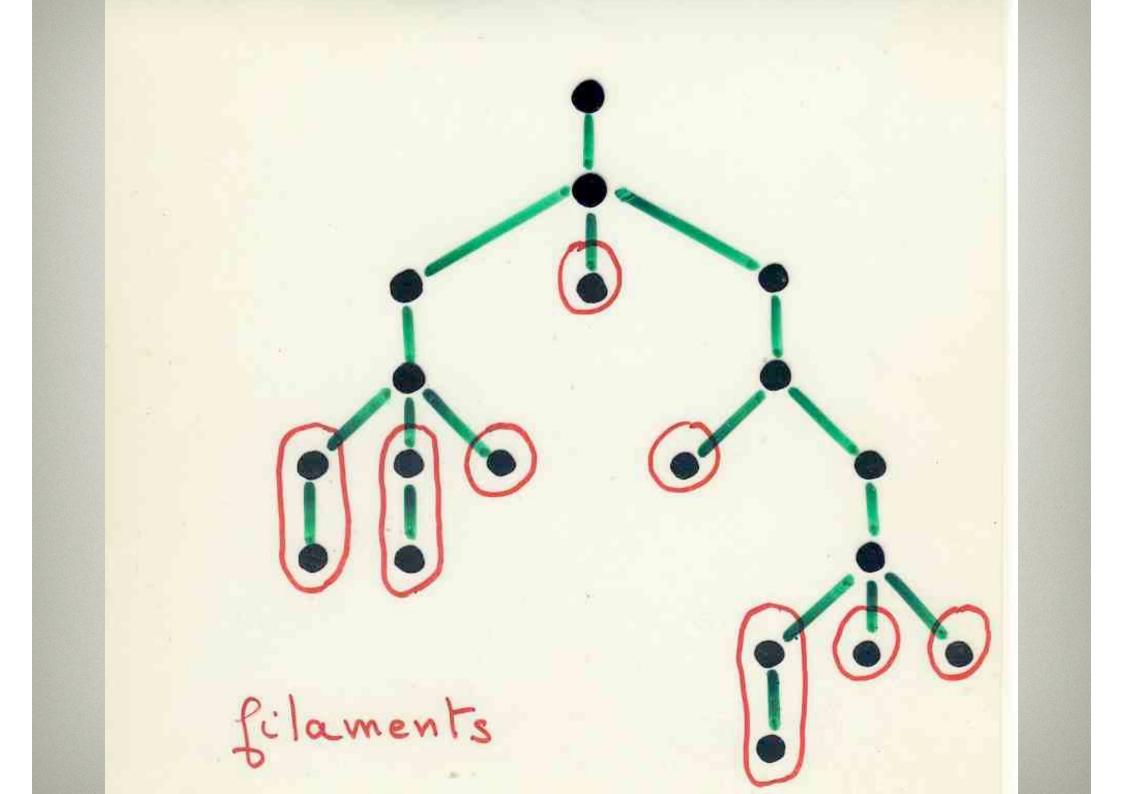


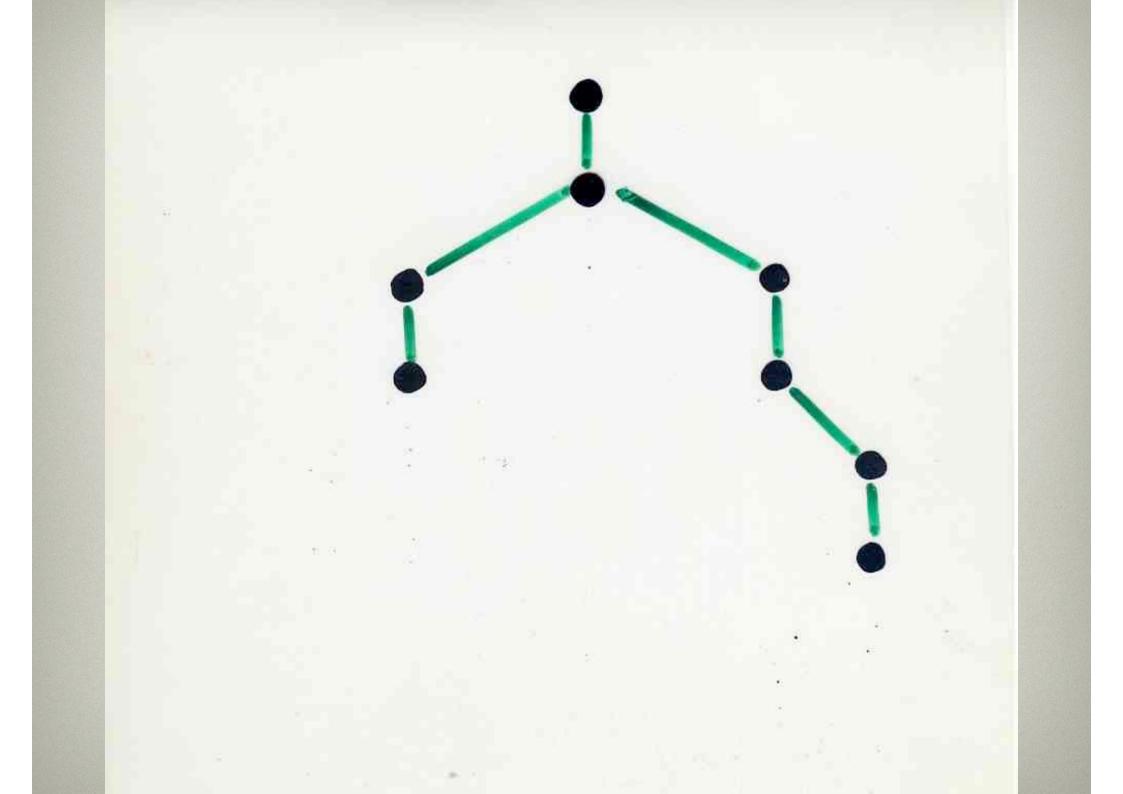
Fig. 1. Secondary structure model of the 16-S RNA from E. coli. This model has been fully described elsewhere [18]. The various secondary structure motifs are numbered for reference. Base-pairings 2 and 23 are included in this up-dated scheme and slight modifications have been introduced into helices 18b and 33b

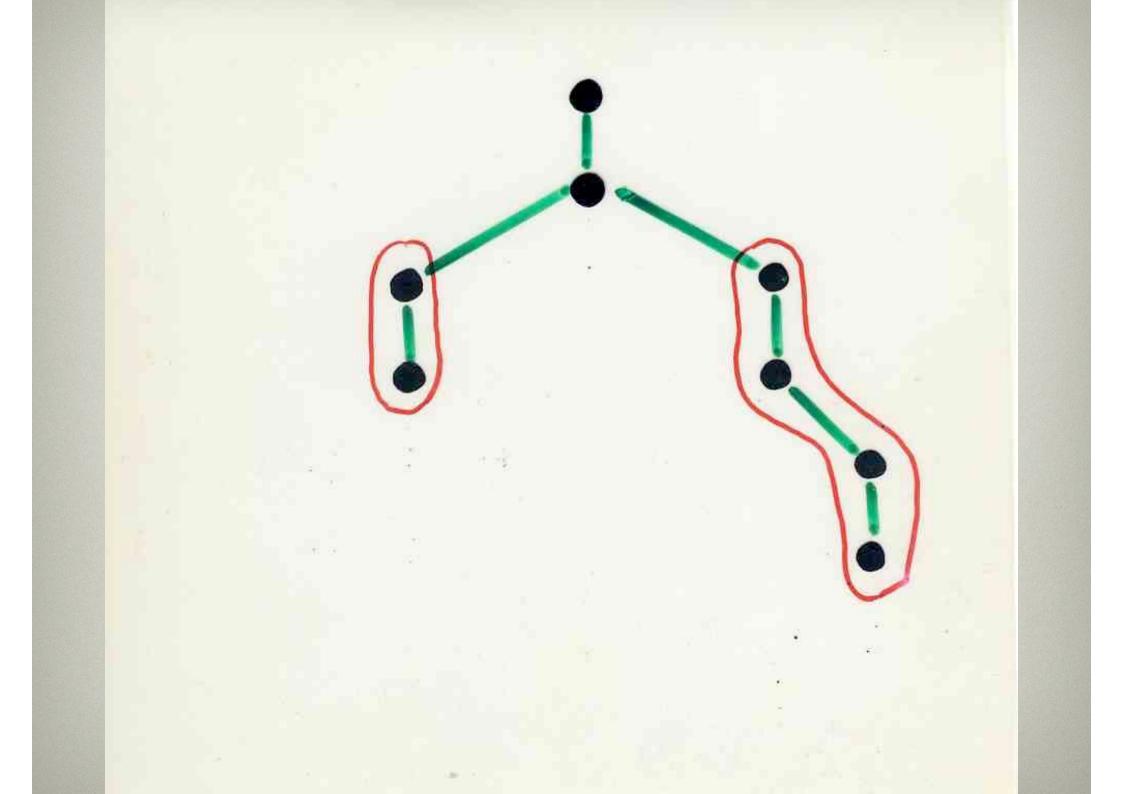
«complexity» or «order» of a molecule

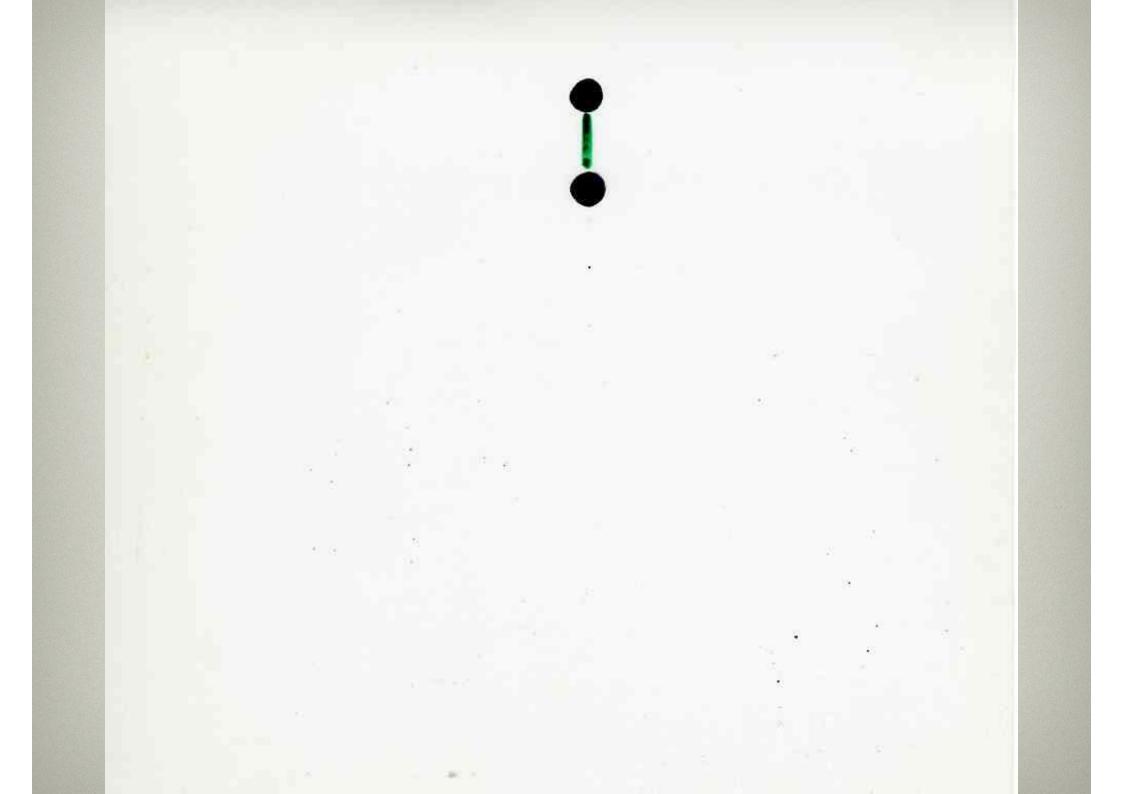
M. Waterman

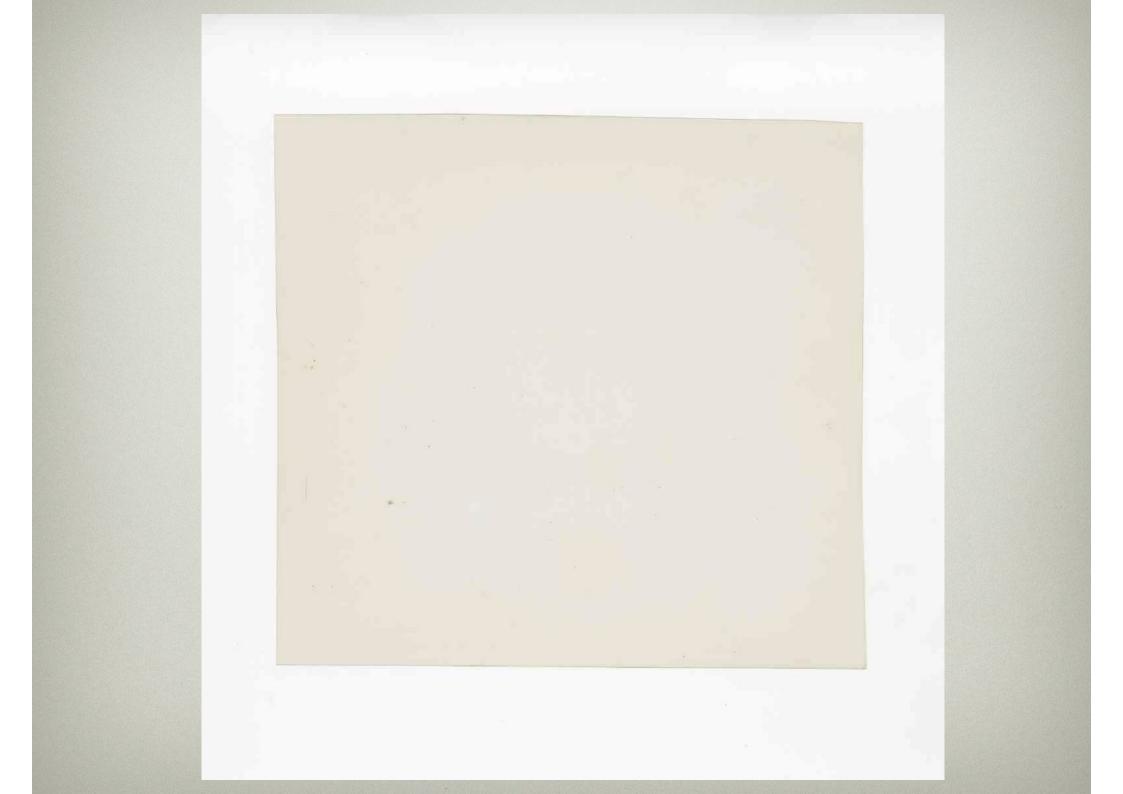


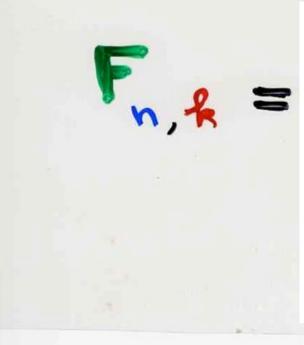










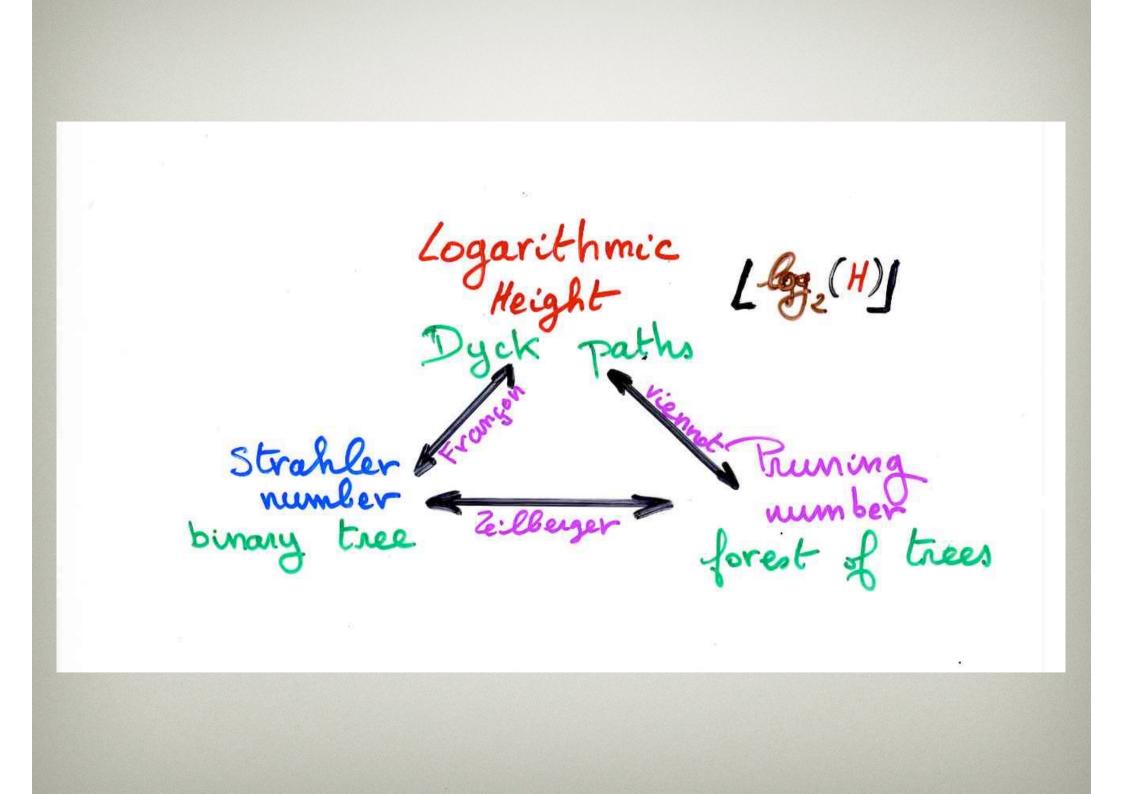


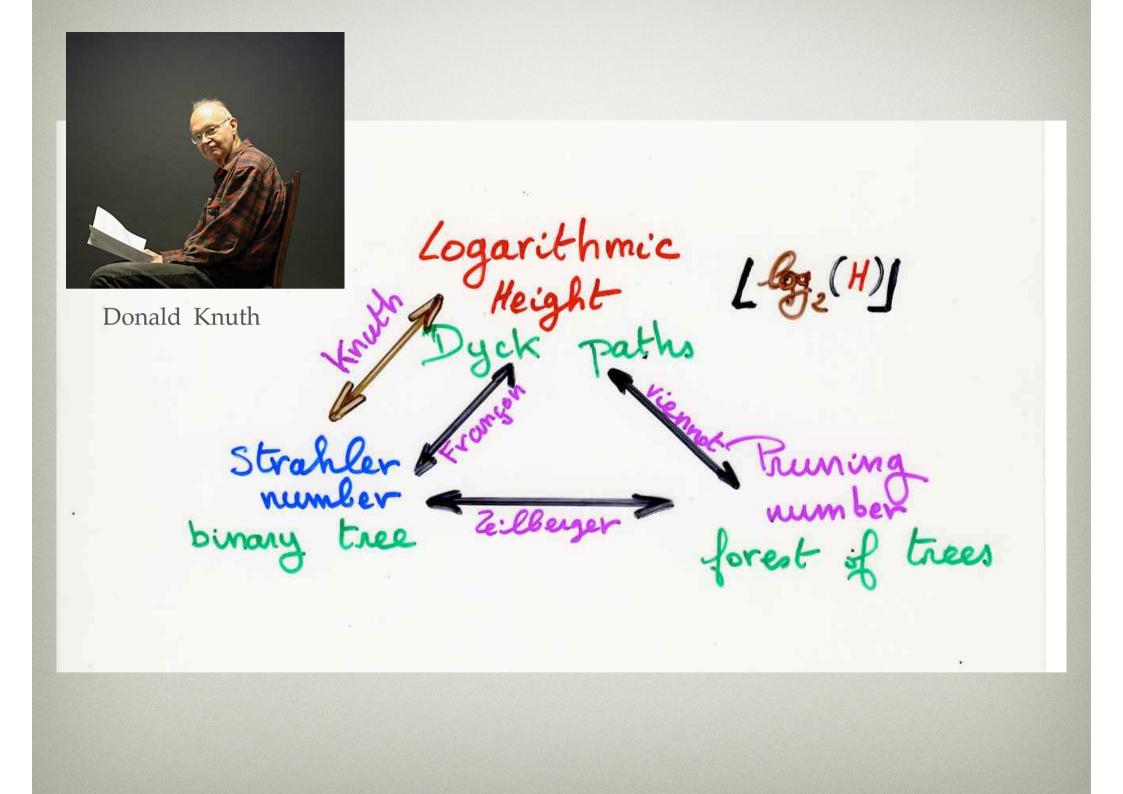
number of forest of trees with n vertices and order k

F, z =

number of forest of trees with n vertices and order k

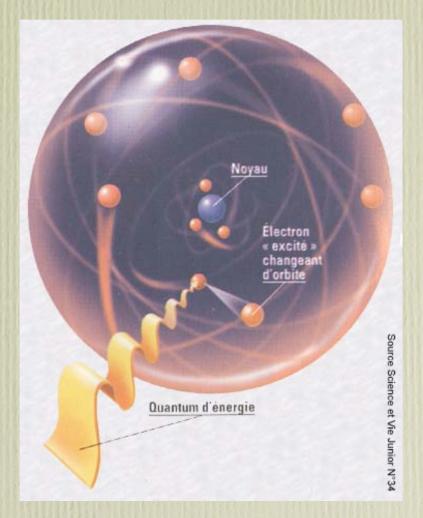
again again same same distribution ! X. V. (1985) (2001) D. Zeilberger (1985)





The infinitely small trees in the particles of light ?

the quantum world

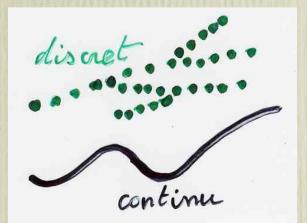


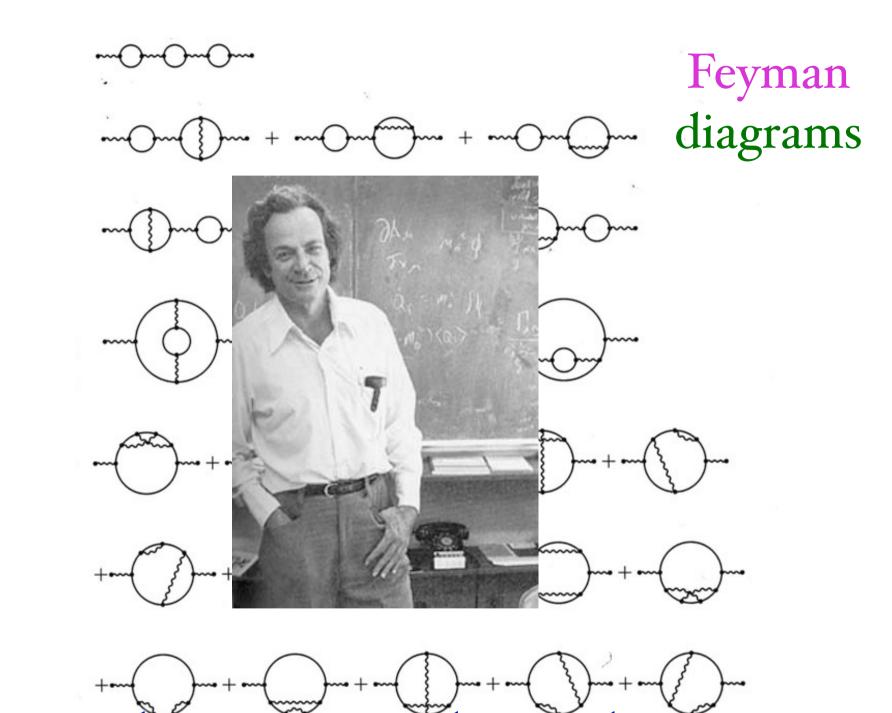
quantum mechanics very far from common intuition

particle: tendancy to exist ...

the famous Schrödinger cat, dead and alive at the same time

space, time, mater, energy: continuous or discrete?





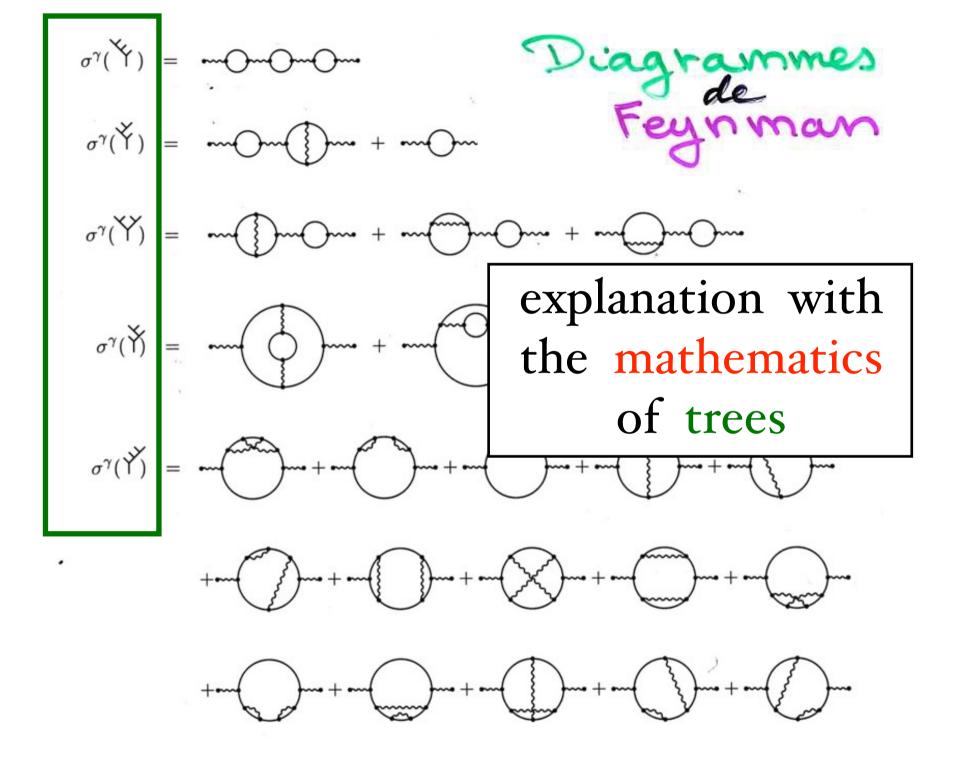
interactions between particles, photons

infinite sums of infinite quantities ?!?

deleting the double infinite ...

quantum renormalization

recipe for cooking



Euclide mathematics, many figures until Newton after, elimination of figures

Lagrange, treatise on mechanics: not a single figure equations, identities, pure abstraction

Joseph-Louis Lagrange 1736 - 1813

AVERTISSEMENT

DE LA DEUXIÈME ÉDITION.

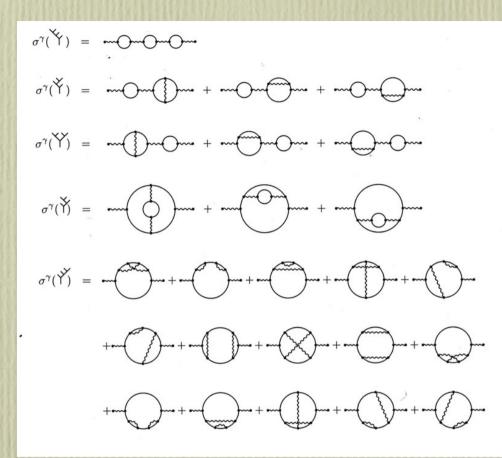
On a déjà plusieurs Traités de Mécanique, mais le plan de celui-ci est entièrement neuf. Je me suis proposé de réduire la théoric de cette Science, et l'art de résoudre les problèmes qui s'y rapportent, à des formules générales, dont le simple développement donne toutes les équations nécéssaires pour la solution de chaque problème.

Cet Ouvrage aura d'ailleurs une autre utilité : il réunira et présentera sous un même point de vue les différents principes trouvés jusqu'ici pour faciliter la solution des questions de Mécanique, en montrera la liaison et la dépendance mutuelle, et mettra à portée de juger de leur justesse et de leur étendue.

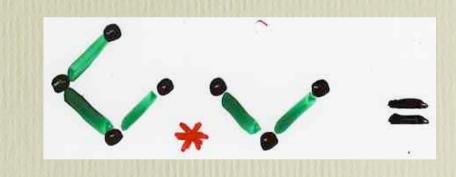
Je le divise en deux Parties : la Statique ou la Théorie de l'Équilibre, et la Dynamique ou la Théorie du Mouvement; et, dans chacune de ces Parties, je traite séparément des corps solides et des fluides.

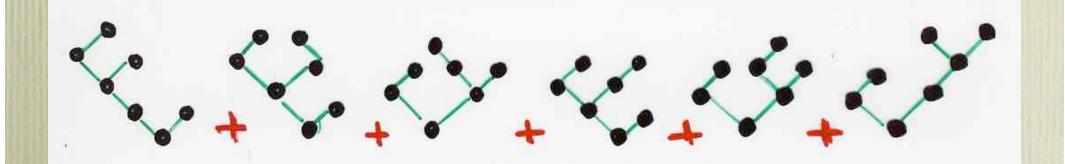
On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j'y expose ne demandent ni constructions, ni raisonnements géométriques ou mécaniques, mais seulement des opérations algébriques, assujetties à une marche régulière et uniforme. Ceux qui aiment l'Analyse verront avec plaisir la Mécanique en devenir une nouvelle branche, et me sauront gré d'en avoir étendu ainsi le domaine.

today, apparition of «figures», but on another level



product of two binary trees

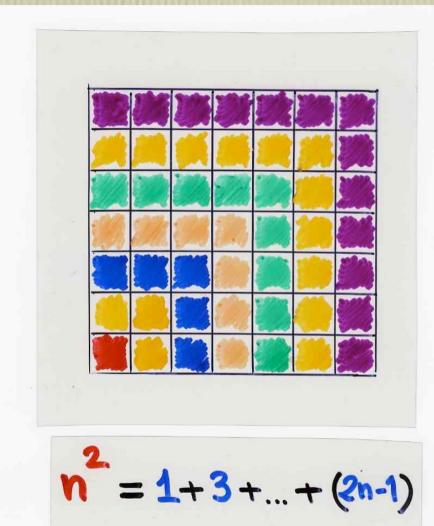


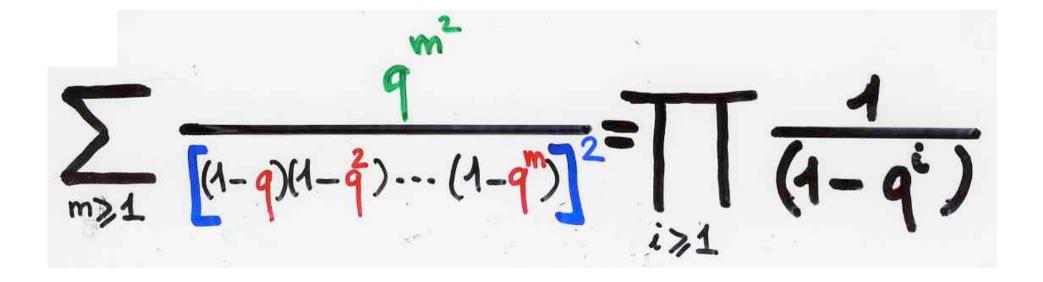


proofs with «figures»

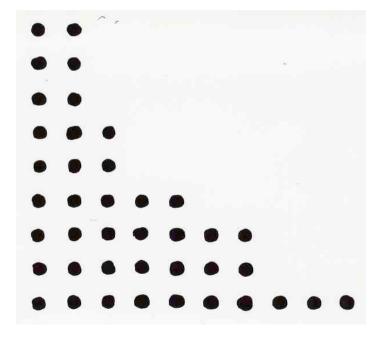
Combinatorial proofs

«combinatorial proof» of some identities with bijections, correspondences combinatorial interpretations

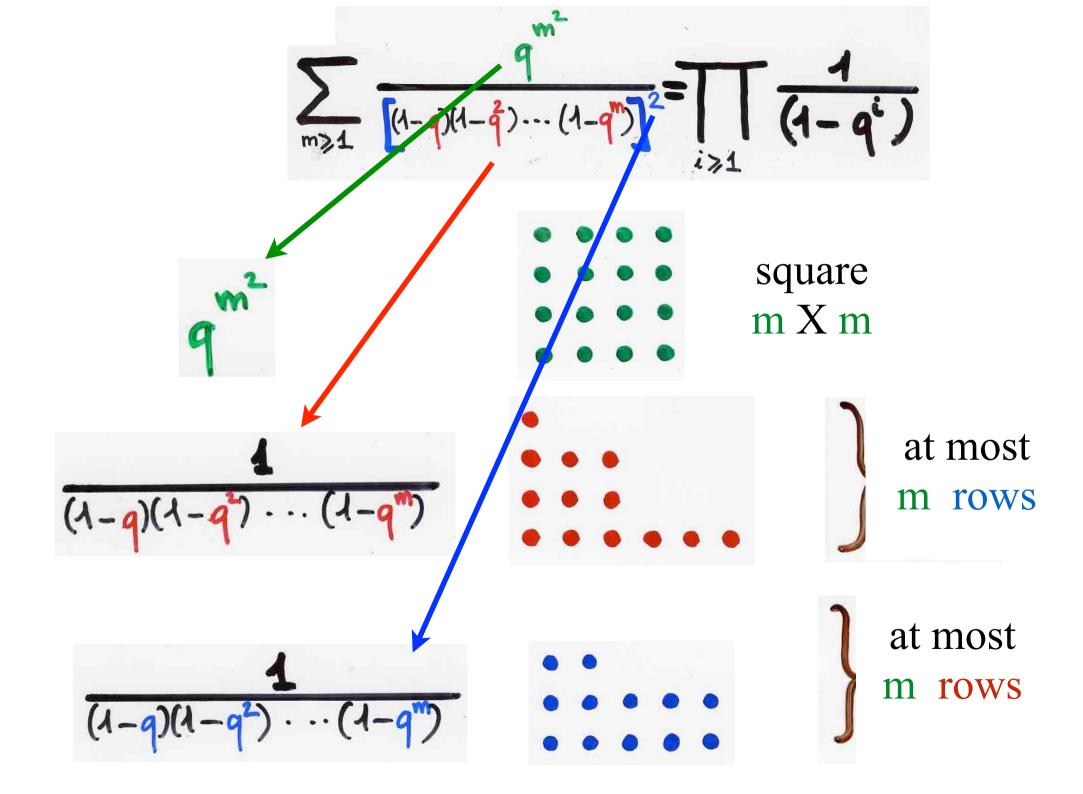


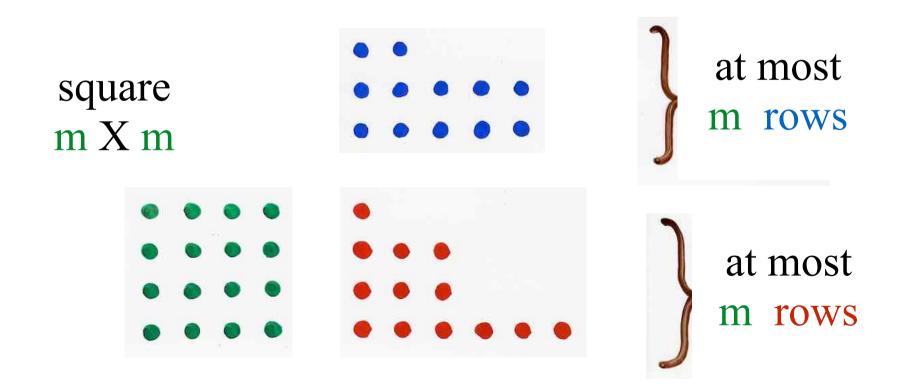


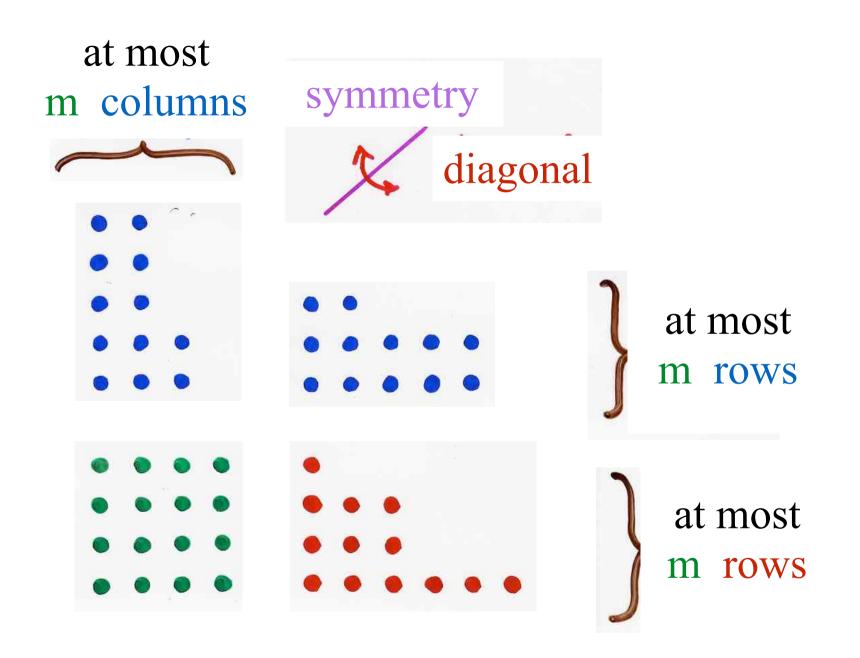
 $\sum_{\substack{m \ge 1}} \frac{q}{[n-q)(1-q^2)\cdots(1-q^n)} = \prod_{\substack{i \ge 1}} \frac{1}{(1-q^i)}$



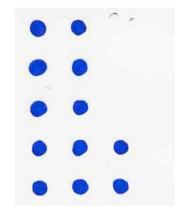
 $= \prod_{i \ge 1} \frac{1}{(1-q^i)}$

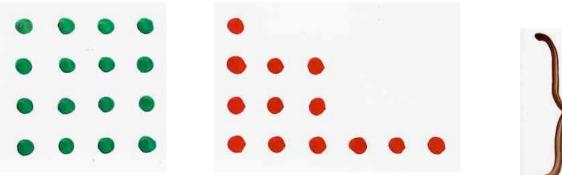


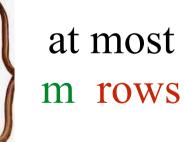


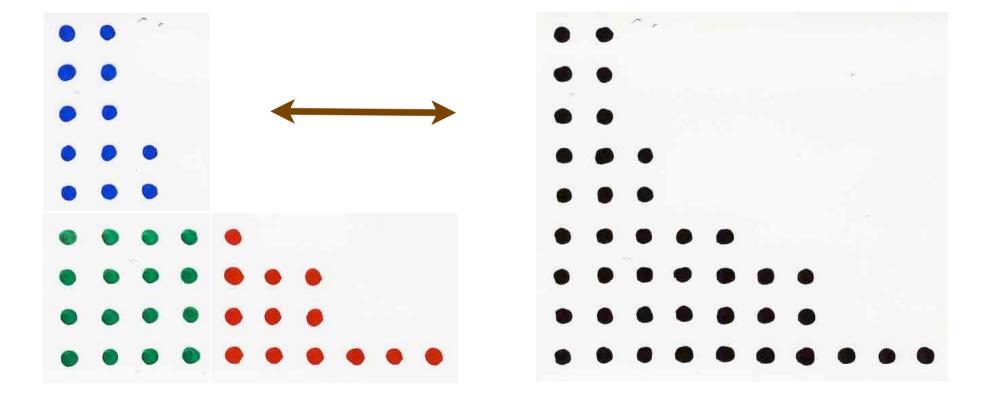


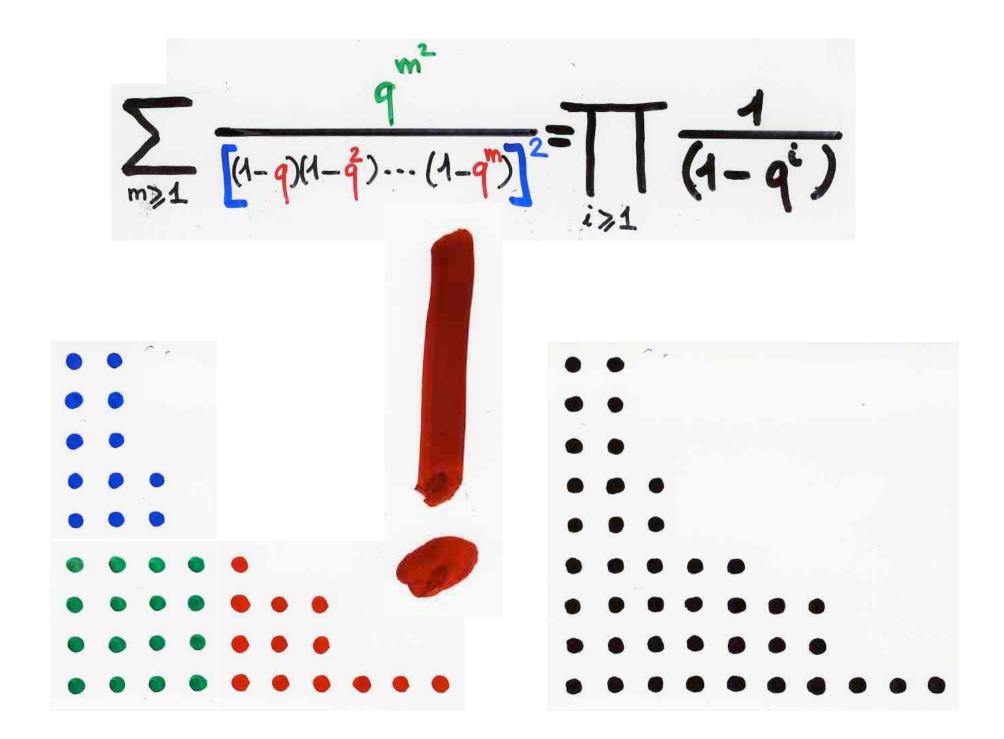
at most m columns





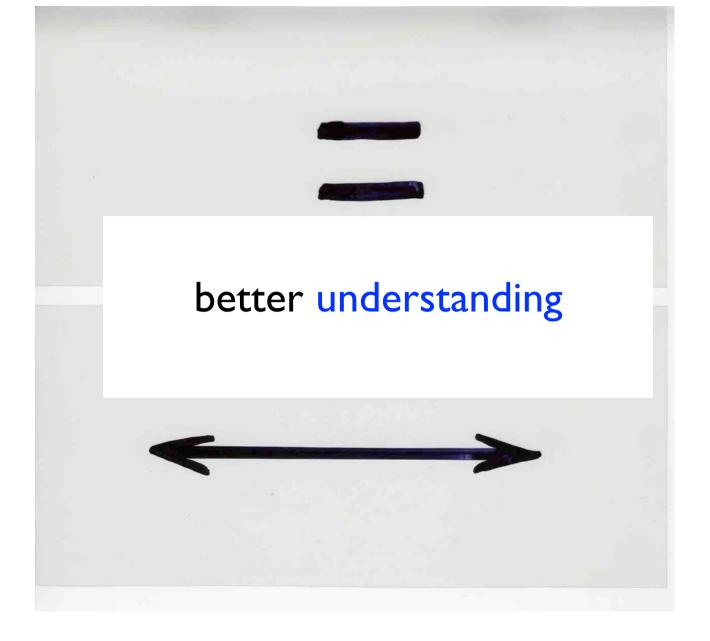






drawing calculus

computing drawings



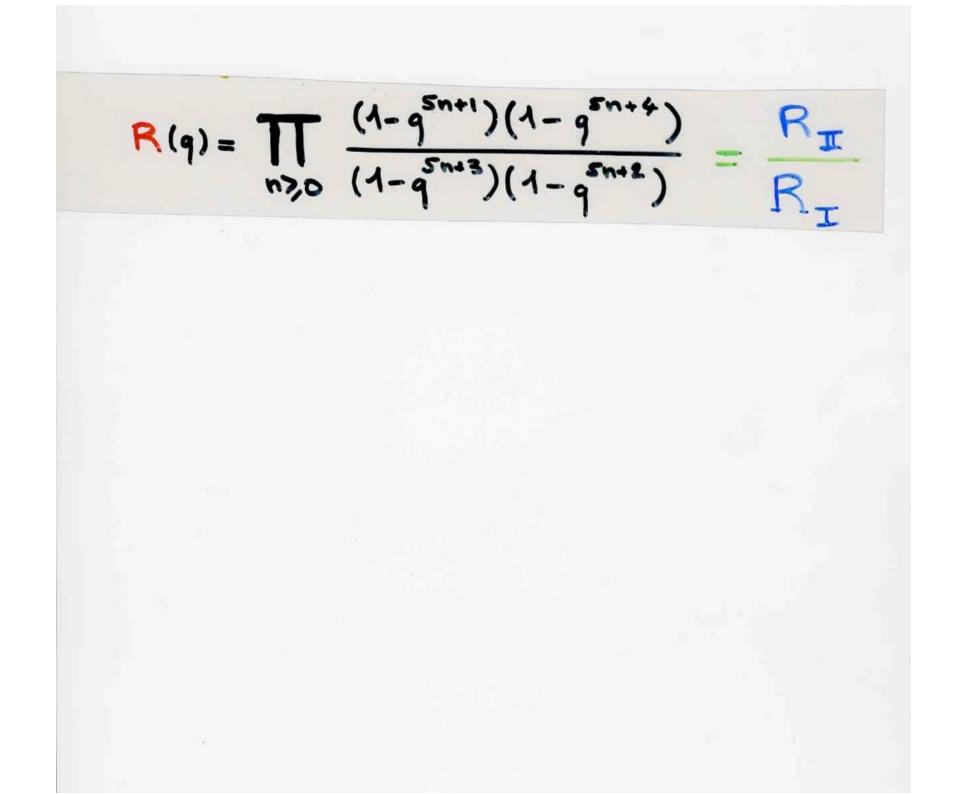
Regers - Ramanajan identities

$$R_{I} = \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i \equiv 1/4 \\ mod \leq i}} \frac{1}{(1-q^{i})}$$

$$R_{I} = \sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i \equiv 2/3 \\ i \equiv 2/3 \\ mod \leq i}} \frac{1}{(1-q^{i})}$$

Srinivasan Ramanujan (1887-1920)

"La fraction continue Ramanujan do +nnzo nzo



$$R(q) = \prod_{n\geq 0} \frac{(4-q^{n+1})(4-q^{n+4})}{(4-q^{n+4})} = \frac{R_{II}}{R_{II}}$$
$$t = -q \left[R(q) \right]^{S}$$

$$R(q) = \prod_{n \geq 0} \frac{(4-q^{5n+1})(4-q^{5n+4})}{(4-q^{5n+2})} = \frac{R_{II}}{R_{II}}$$

$$t = -q \left[R(q) \right]^{5}$$

$$Y(q) = \prod_{n \geq 0} \frac{(1-q^{6n+2})(1-q^{6n+3})^{2}(1-q^{6n+4})(1-q^{5n+1})^{2}(1-q^{5n+3})^{2}}{(1-q^{6n+2})(1-q^{6n+2})(1-q^{6n+2})^{3}(1-q^{5n+3})^{3}}$$

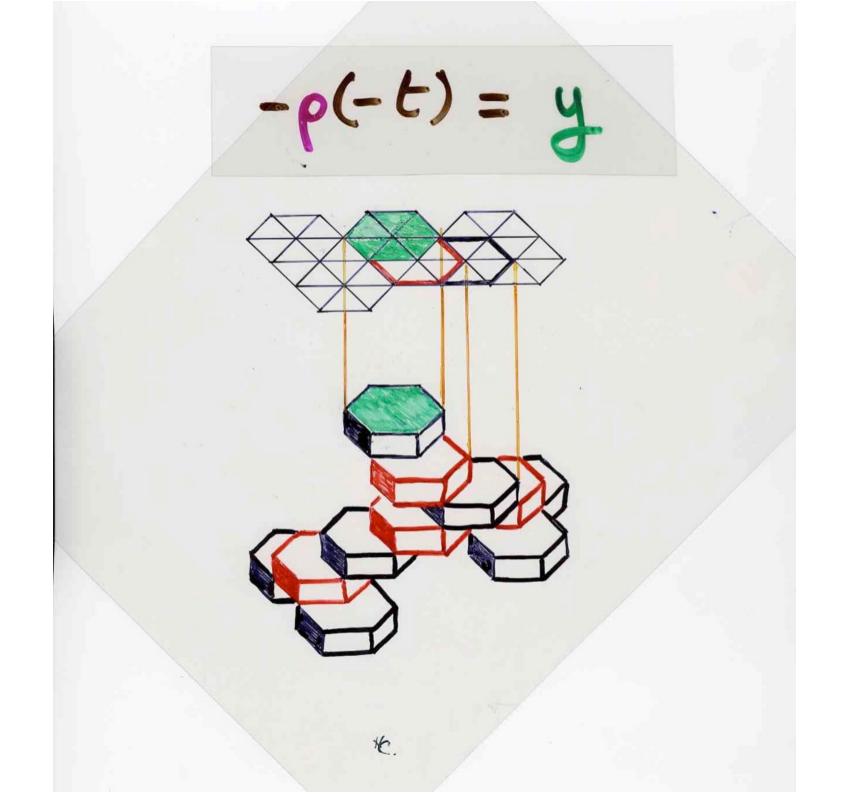
$$R(q) = \prod_{n \geq 0} \frac{(4 - q^{n+1})(4 - q^{n+4})}{(4 - q^{n+4})(4 - q^{n+4})} = \frac{R_{II}}{R_{II}}$$

$$t = -q \left[R(q) \right]^{S}$$

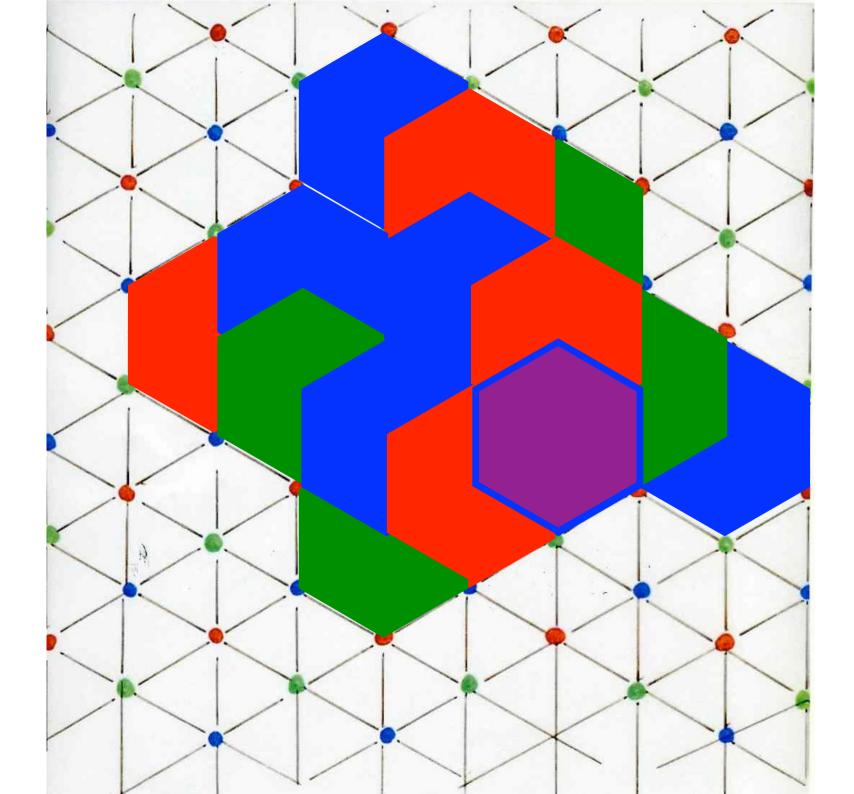
$$f(q) = \prod_{n \geq 0} \frac{(1 - q^{n+2})(1 - q^{n+3})^{2}(1 - q^{n+4})(1 - q^{n+2})^{2}(1 - q^{n+3})^{2}}{(1 - q^{n+3})^{2}(1 - q^{n+4})(1 - q^{n+2})^{2}(1 - q^{n+3})^{2}}$$

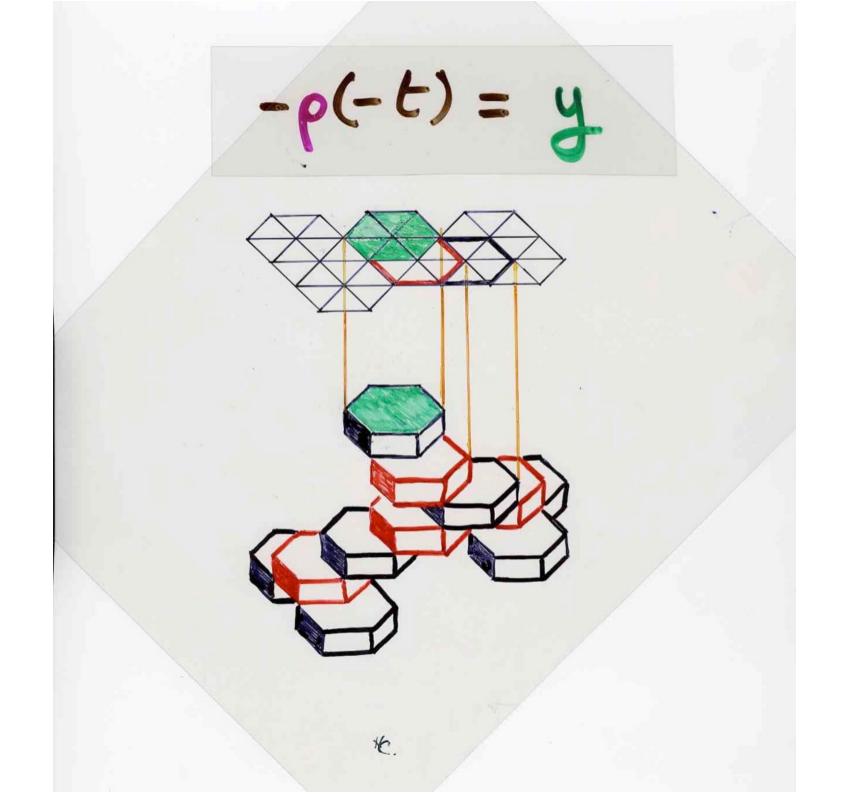
$$Z(t) = Y(q(t))$$

$$\begin{aligned} & \left(1 + 14t + 97t^{\frac{1}{2}} + 415t^{\frac{1}{2}} + 1820t^{\frac{1}{2}} + 2321t^{\frac{1}{2}} + 3247t^{\frac{1}{2}} + 3300t^{\frac{1}{2}} + 2475t^{\frac{1}{2}} + 1375t^{\frac{1}{2}} + 550t^{\frac{1}{2}} + 143t^{\frac{1}{2}} + 18t^{\frac{1}{2}}\right) + \\ & \left(1 + 47t + 83t^{\frac{1}{2}} + 60tt^{\frac{1}{2}} + 1049t^{\frac{1}{2}} + 460t^{\frac{1}{2}} + 709t^{\frac{1}{2}} + 700t^{\frac{1}{2}} + 708t^{\frac{1}{2}} + 708t^{\frac{1}{2}} + 708t^{\frac{1}{2}} + 608t^{\frac{1}{2}} - 608t^{\frac{1}{2}} - 600t^{\frac{1}{2}} - 36t^{\frac{1}{2}}\right) + \\ & \left(3 + 50t + 381t^{\frac{1}{2}} + 1715t^{\frac{1}{2}} + 5040t^{\frac{1}{2}} + 10130t^{\frac{1}{2}} + 14062t^{\frac{1}{2}} + 13002t^{\frac{1}{2}} + 6930t^{\frac{1}{2}} + 715t^{\frac{9}{2}} - 1595t^{\frac{19}{2}} + 988t^{\frac{1}{2}} - 198t^{\frac{1}{2}}\right) + \\ & \left(3 + 50t + 381t^{\frac{1}{2}} + 1715t^{\frac{9}{2}} + 595t^{\frac{1}{2}} + 1715t^{\frac{9}{2}} + 3374t^{\frac{1}{2}} + 4939t^{\frac{1}{2}} + 4856t^{\frac{9}{2}} + 1815t^{\frac{9}{2}} - 605t^{\frac{9}{2}} + 1210t^{\frac{10}{2}} - 616t^{\frac{11}{2}} - 126t^{\frac{10}{2}}\right) + \\ & \left(1 + 11t^{\frac{1}{2}} + 55t^{\frac{3}{2}} + 165t^{\frac{1}{2}} + 330t^{\frac{5}{2}} + 462t^{\frac{1}{2}} + 462t^{\frac{1}{2}} + 330t^{\frac{9}{2}} + 165t^{\frac{9}{2}} + 11t^{\frac{1}{2}} + t^{\frac{12}{2}}\right) \right) \\ & \left(1 + 11t^{\frac{1}{2}} + 55t^{\frac{3}{2}} + 165t^{\frac{1}{2}} + 330t^{\frac{5}{2}} + 462t^{\frac{1}{2}} + 462t^{\frac{1}{2}} + 330t^{\frac{9}{2}} + 165t^{\frac{9}{2}} + 11t^{\frac{1}{2}} + t^{\frac{12}{2}}\right) \right) \\ & \left(1 + 11t^{\frac{1}{2}} + 55t^{\frac{3}{2}} + 165t^{\frac{1}{2}} + 330t^{\frac{5}{2}} + 462t^{\frac{1}{2}} + 462t^{\frac{1}{2}} + 330t^{\frac{9}{2}} + 165t^{\frac{9}{2}} + 11t^{\frac{1}{2}} + t^{\frac{12}{2}}\right) \right) \\ & \left(1 + 11t^{\frac{1}{2}} + 55t^{\frac{3}{2}} + 165t^{\frac{1}{2}} + 330t^{\frac{1}{2}} + 462t^{\frac{1}{2}} + 462t^{\frac{1}{2}} + 330t^{\frac{9}{2}} + 165t^{\frac{9}{2}} + 11t^{\frac{1}{2}} + t^{\frac{12}{2}}\right) \right) \\ & \left(1 + 11t^{\frac{1}{2}} + 55t^{\frac{3}{2}} + 165t^{\frac{1}{2}} + 330t^{\frac{1}{2}} + 462t^{\frac{9}{2}} + 462t^{\frac{9}{2}} + 462t^{\frac{9}{2}} + 330t^{\frac{9}{2}} + 165t^{\frac{9}{2}} + 11t^{\frac{9}{2}} + 11t^$$



The idea of heaps of pieces

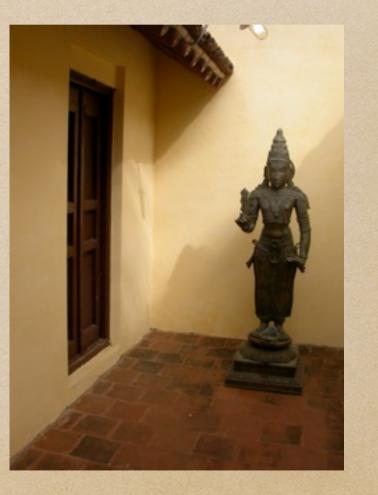


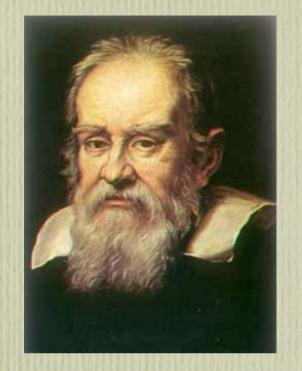


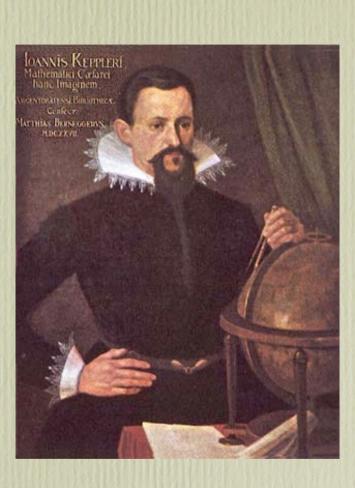
Combinatorial Physics

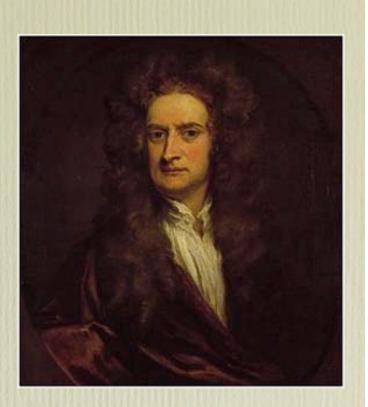
The infinitely large

Trees in the stars?



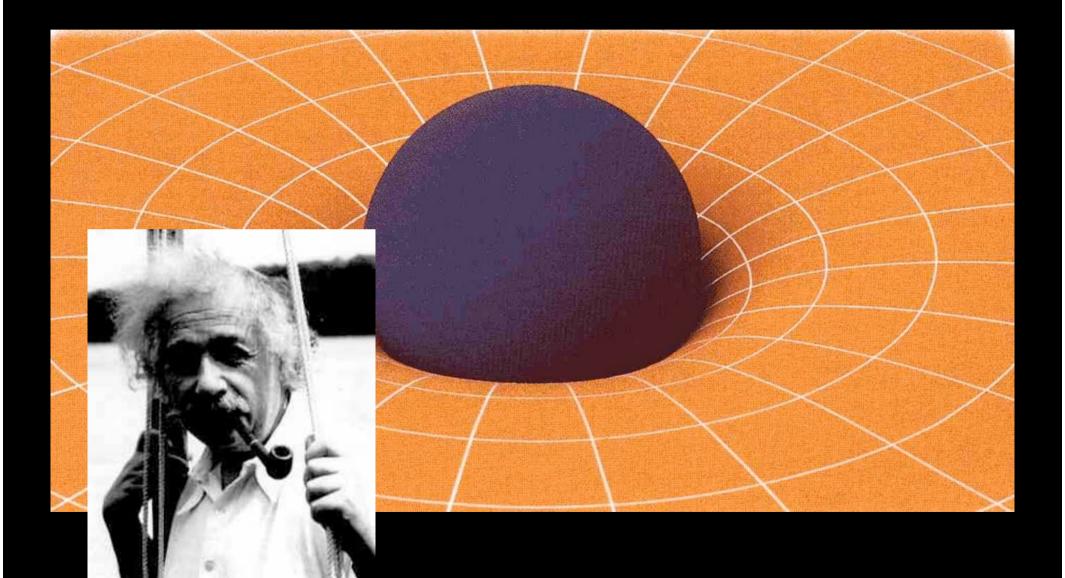


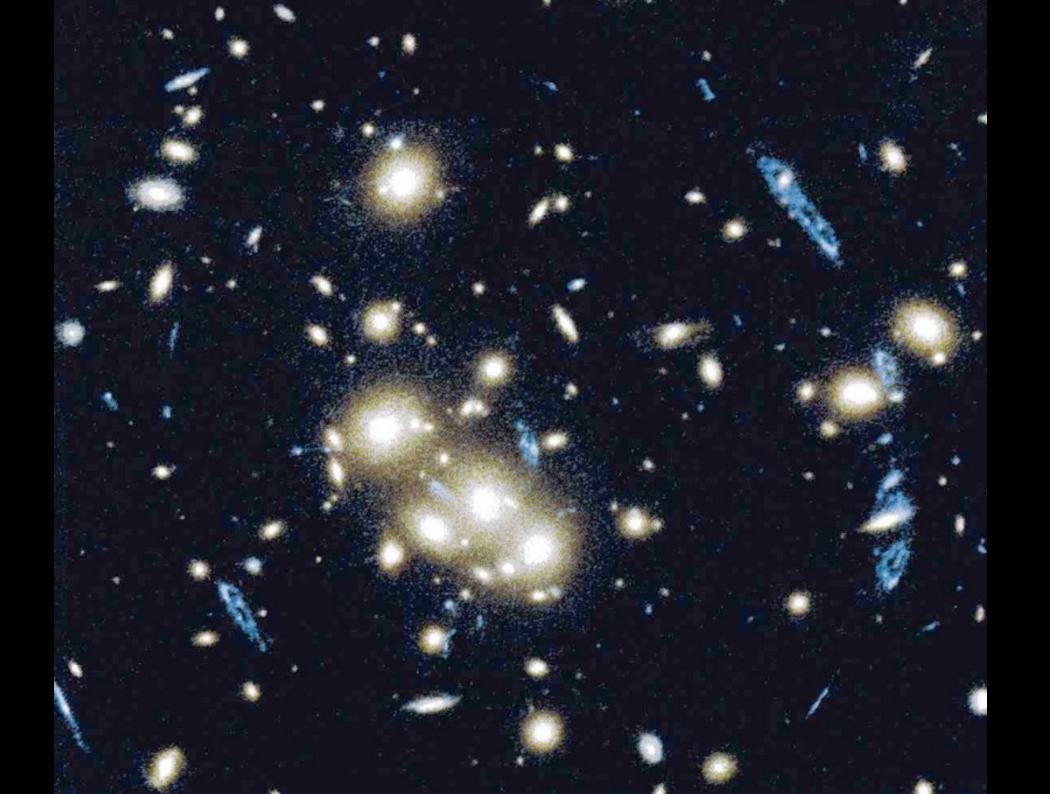




classical geometry and mechanics Galileo, Kepler, Newton,...

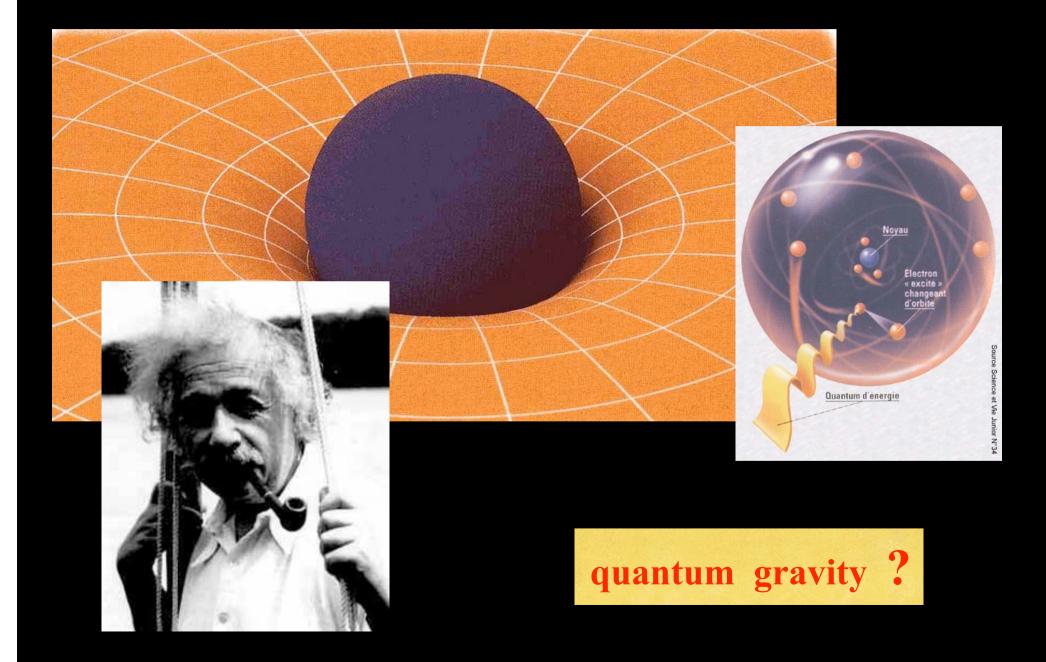
general relativity





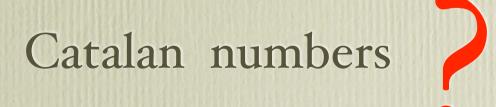
general relativity

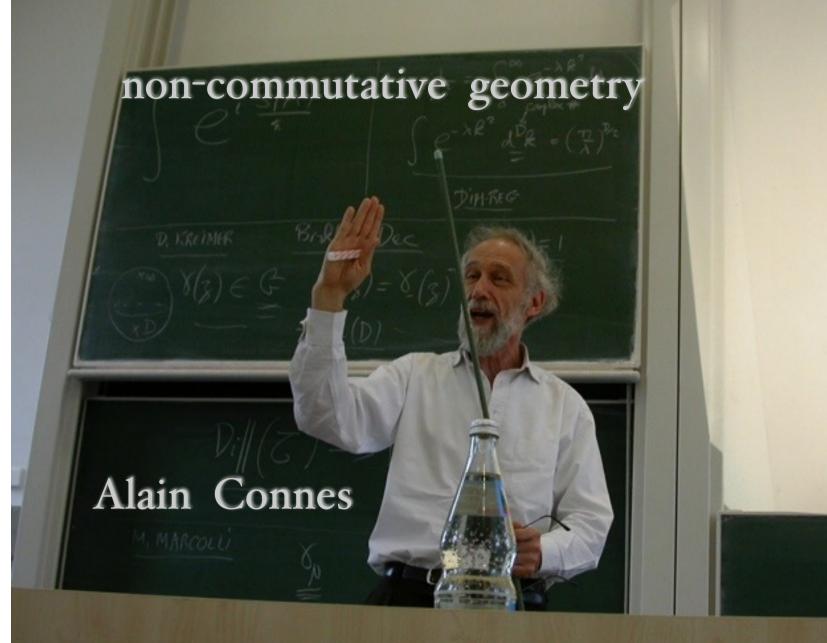
quantum mechanics



strings theory

particle as a violin chord ... ? each frequency corresponds to a particle.... ?





Universal Singular Fra

 $\gamma_U(z,v) = \operatorname{Te}^{-\frac{1}{z}\int_0^v u^{\mathrm{Y}}(e) \frac{\mathrm{d}u}{u}}$

 $\gamma_U(-z,v) = \sum_{n \ge 0} \sum_{k_j > 0} \frac{e(-k_1)e(-k_2)\cdots e(-k_n)}{k_1(k_1+k_2)\cdots(k_1+k_2+\cdots+1)}$

Same coefficients as

Local Index Formula in NC

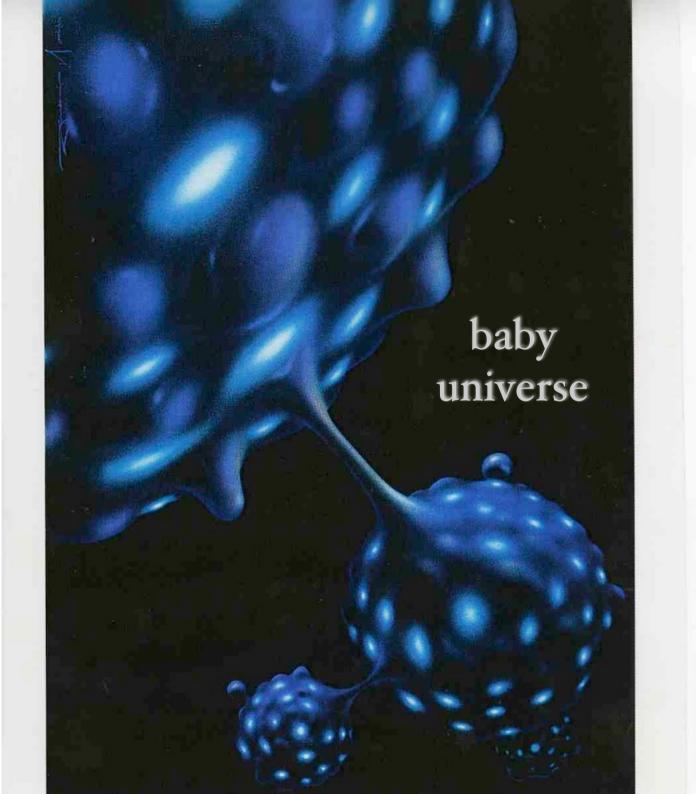
loop quantum gravity

Carlo Rovelli

May be time does not exists ?

Drawing S. Numazawa

Ciel & Espace



quantum gravity

causal dynamical triangulations

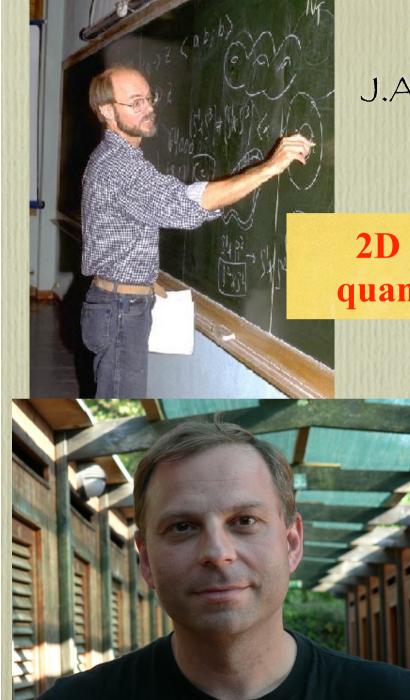
Xavier, you should have a look at these papers:

Deepak Dhar TIFR Bombay

J. Ambjørn, R. Loll, "Non-perturbative Lonentzian quantum gravity and topology change", Nucl. Phys. B536 (1998) 407-434 anXiv: hep-th/ 9805108

P. Di Francesco, E. Guilter, C. Kristjansen, Integrable 2D Grentzian gravity and random welks", Nucl. Phys. B 567 (2000) 515-553 aXiv: hep-th / 99 07-84

gravitation quantique



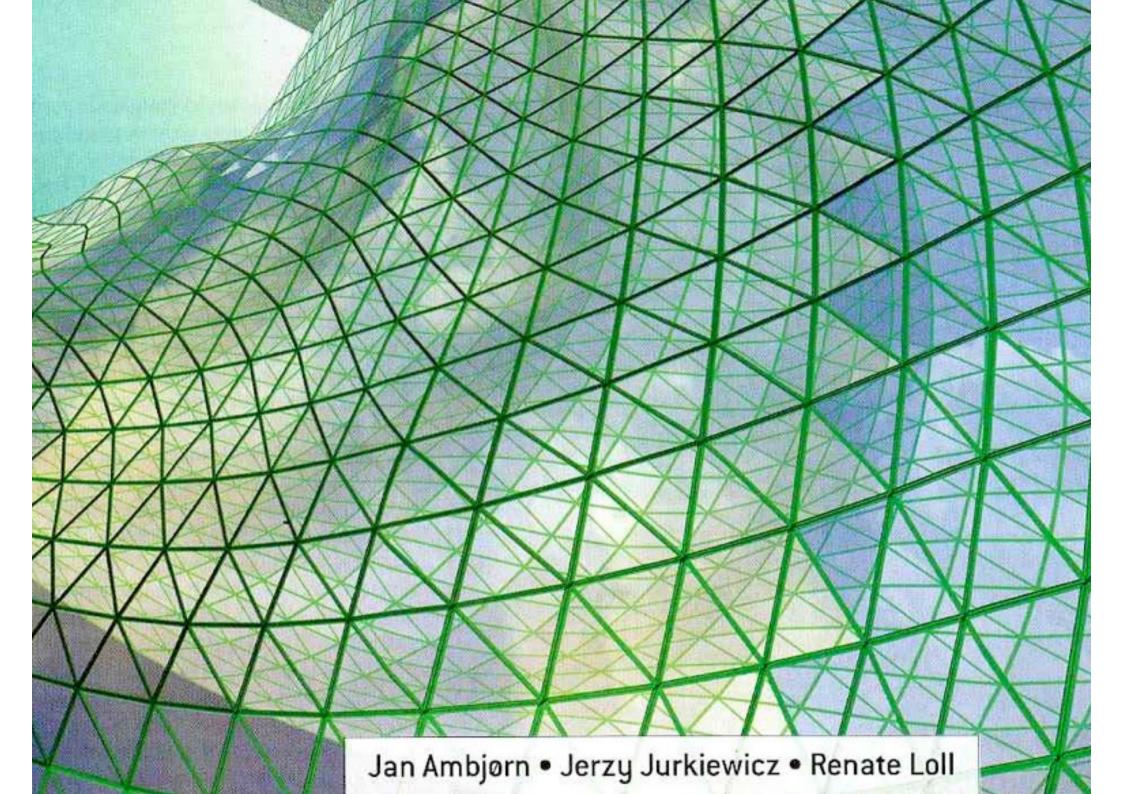
P. Di Francesco

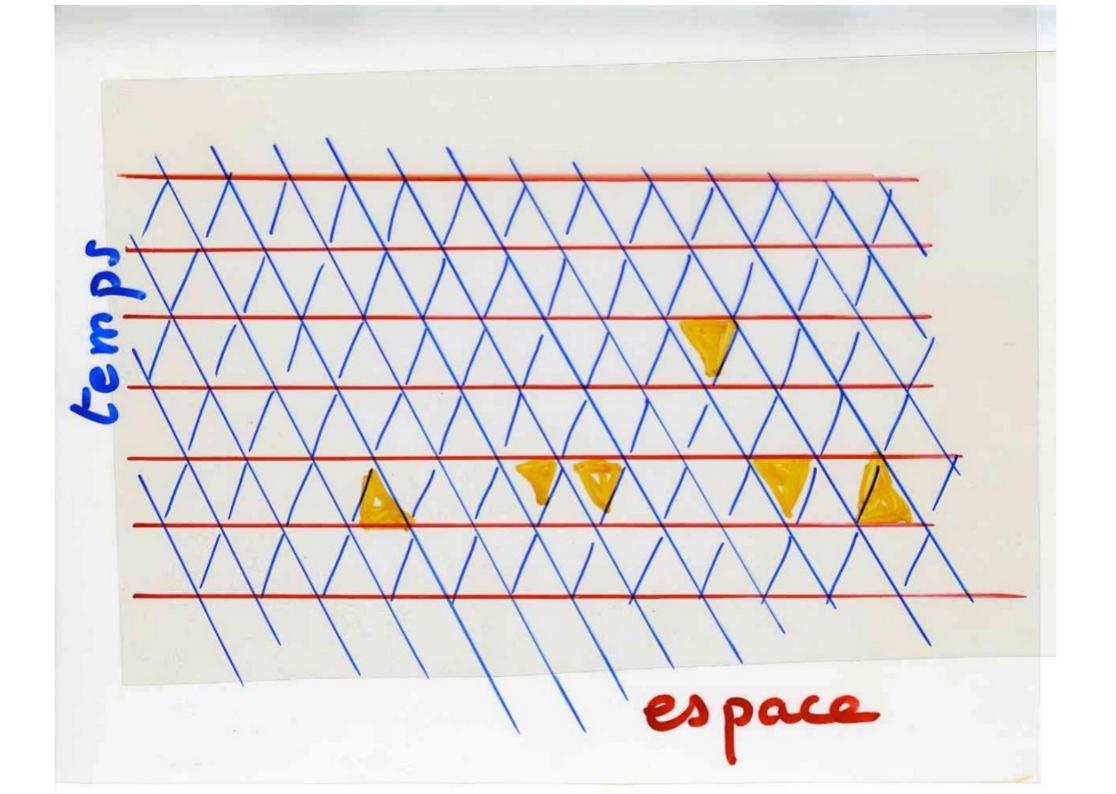
J.Ambjørn

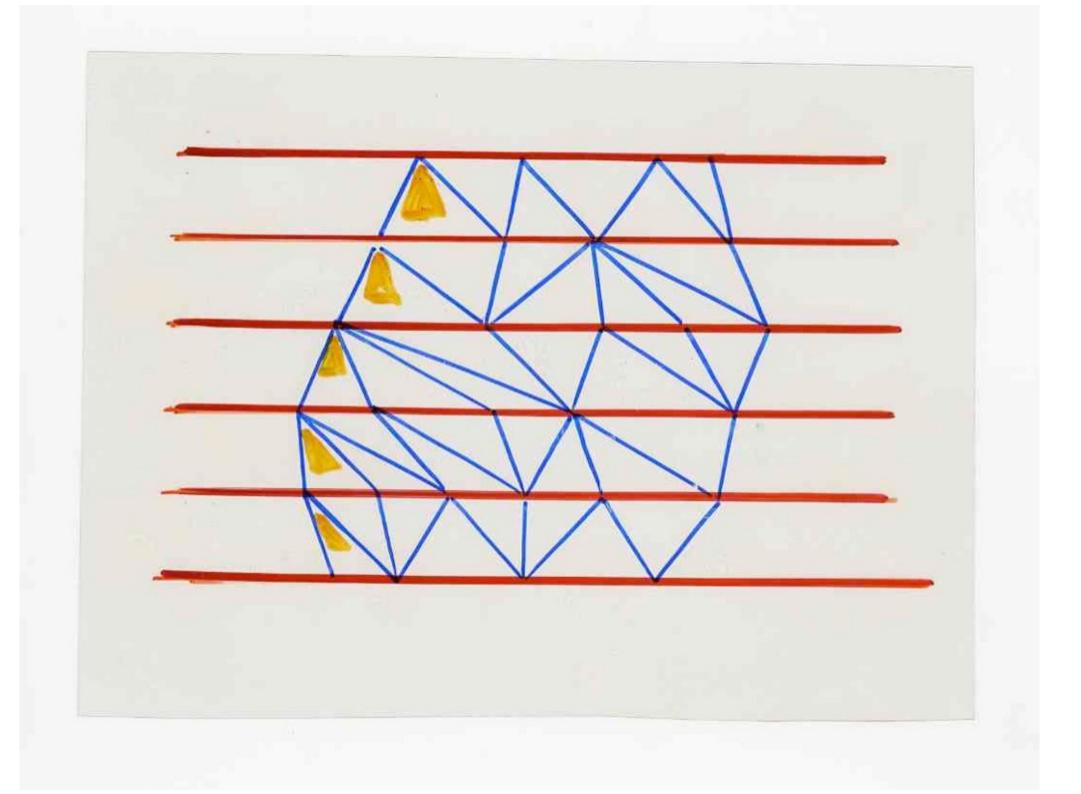
2D Lorentzian quantum gravity

R. Loll

C. Kristjansen

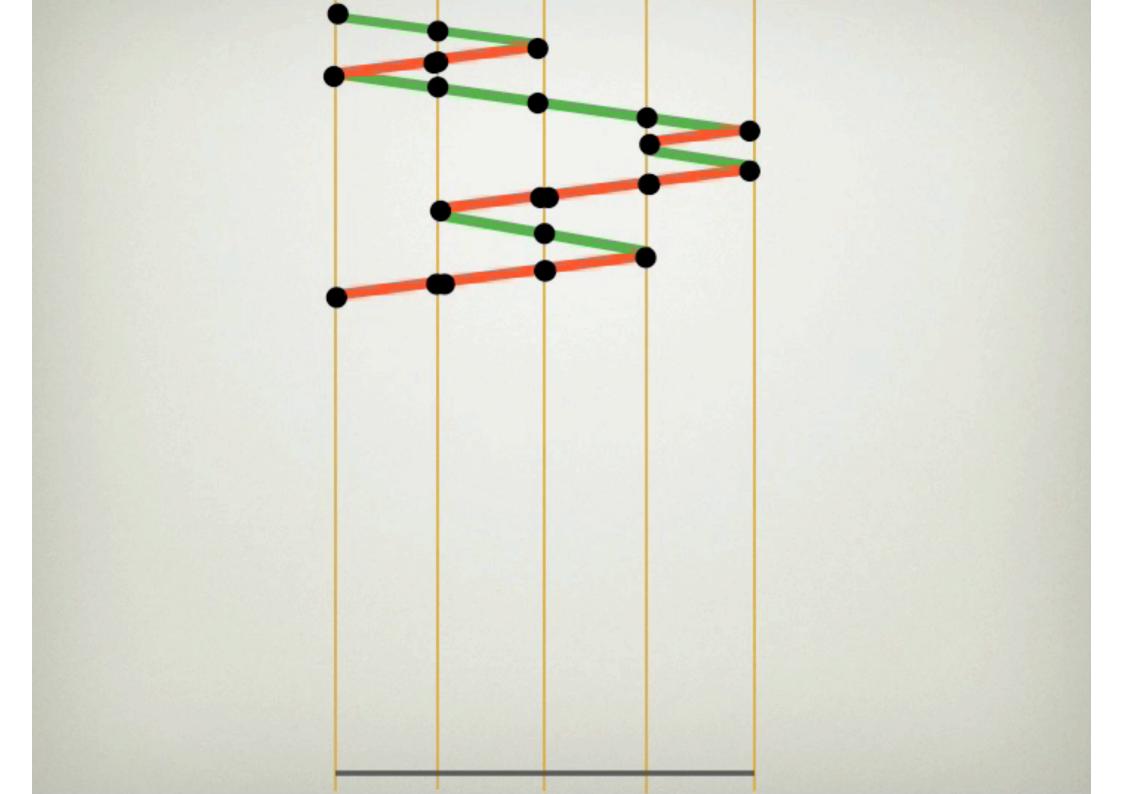




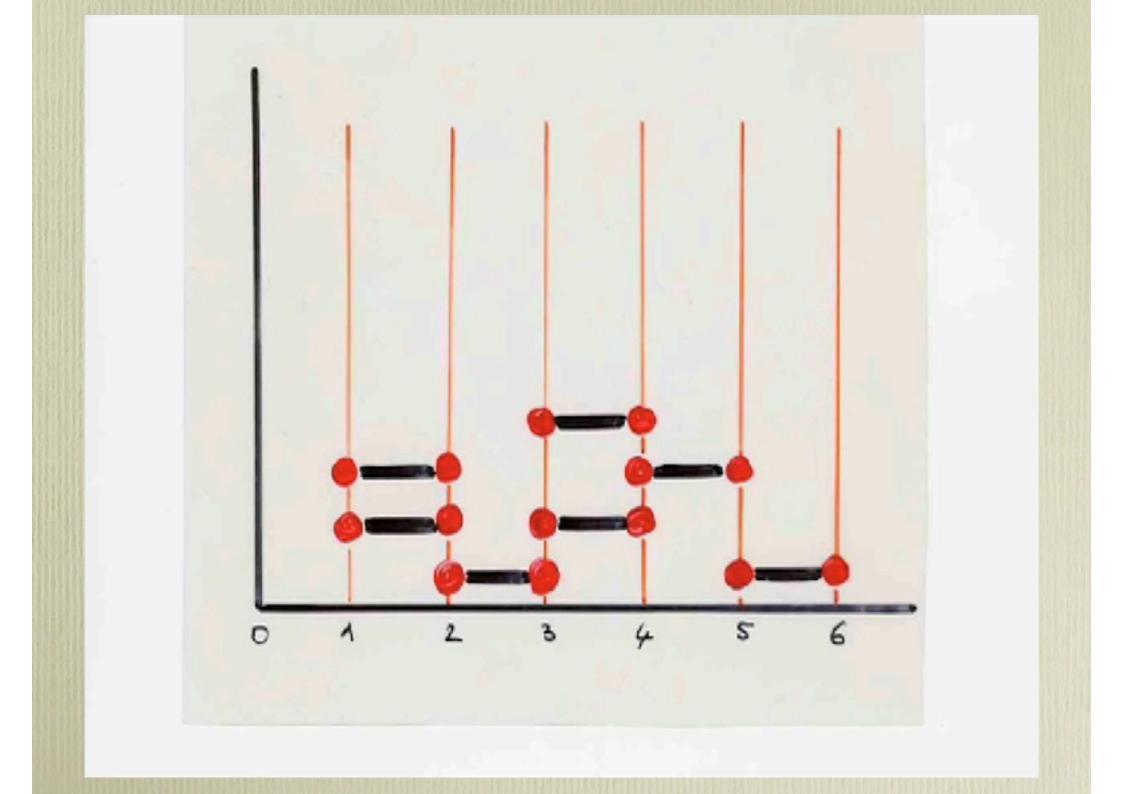


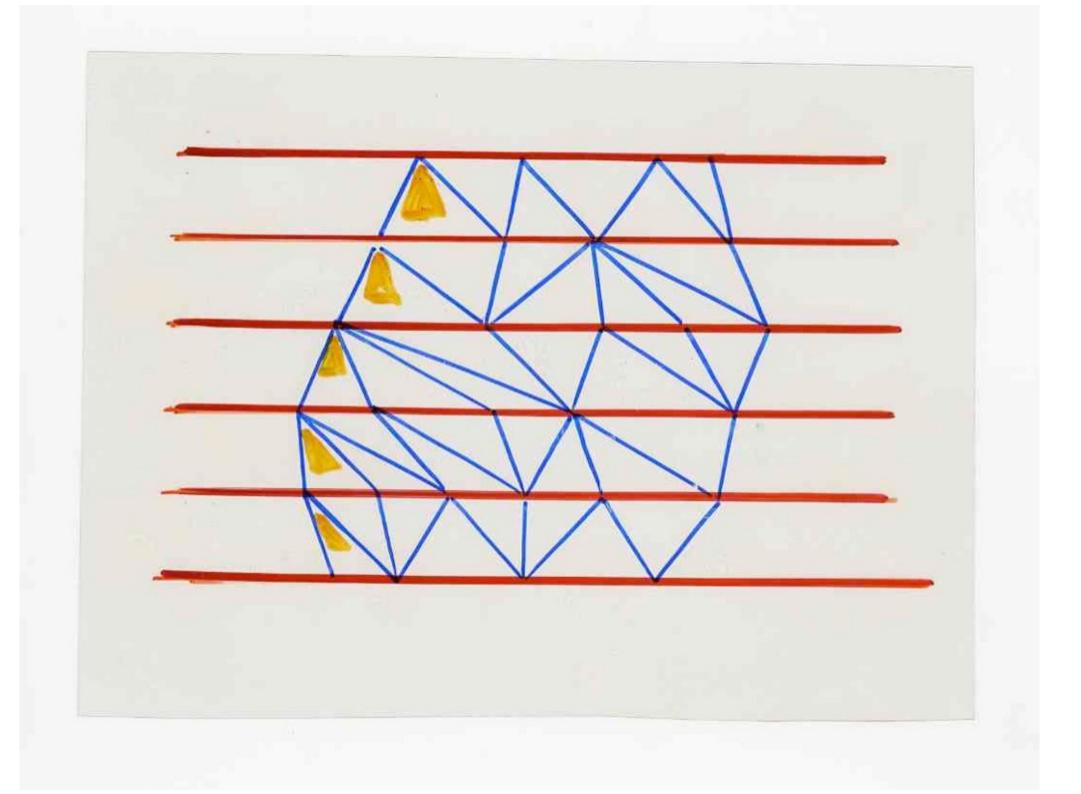
Catalan number $C_n = \frac{1}{(n+1)} \binom{2n}{n}$

from Dyck paths to heaps of dímers



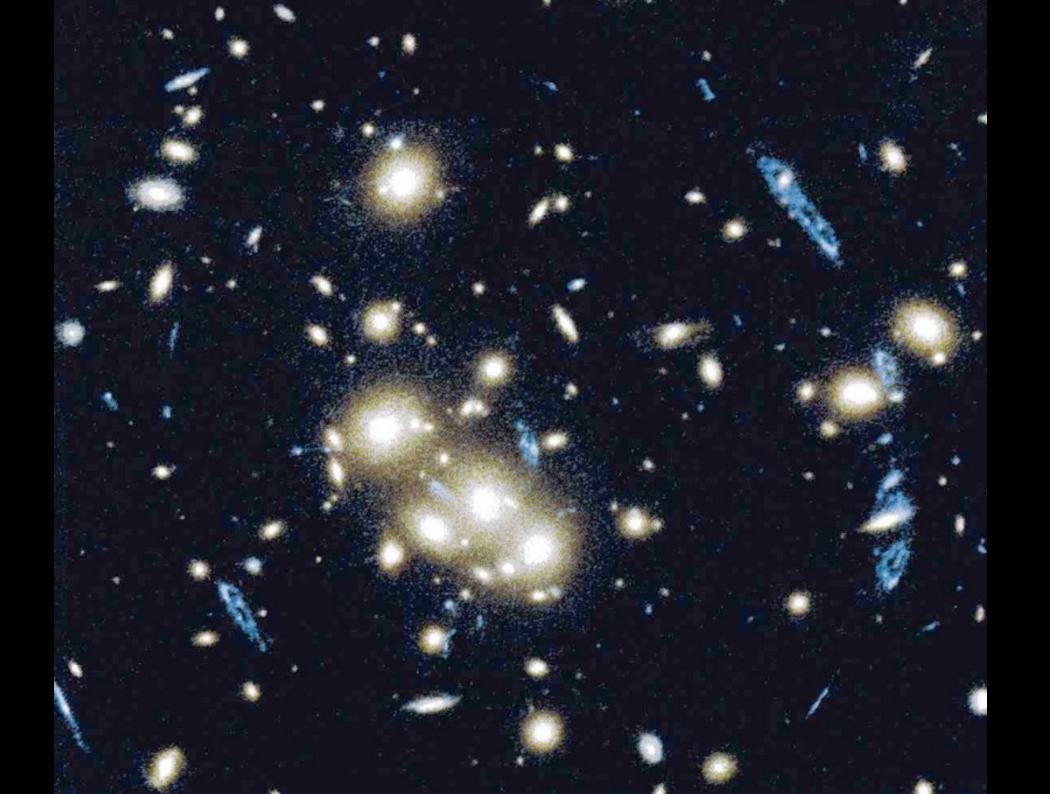
From heaps of dimers to Lorentzian triangulations

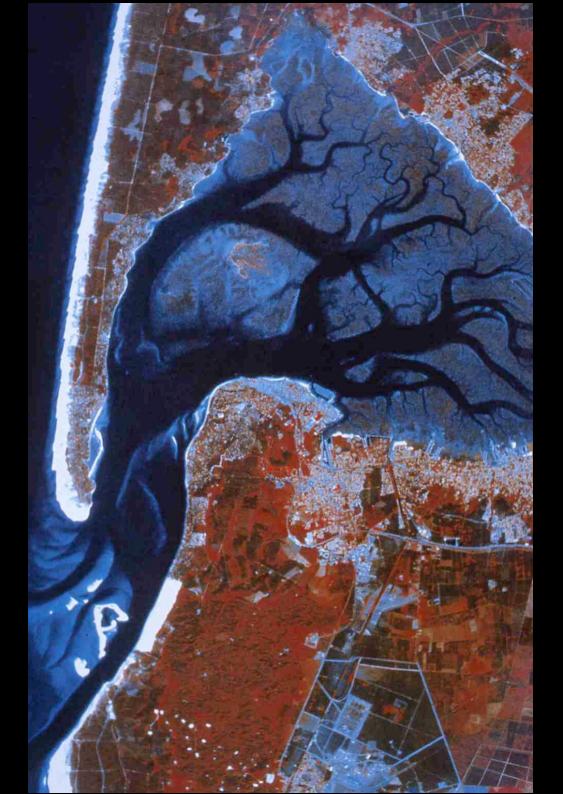




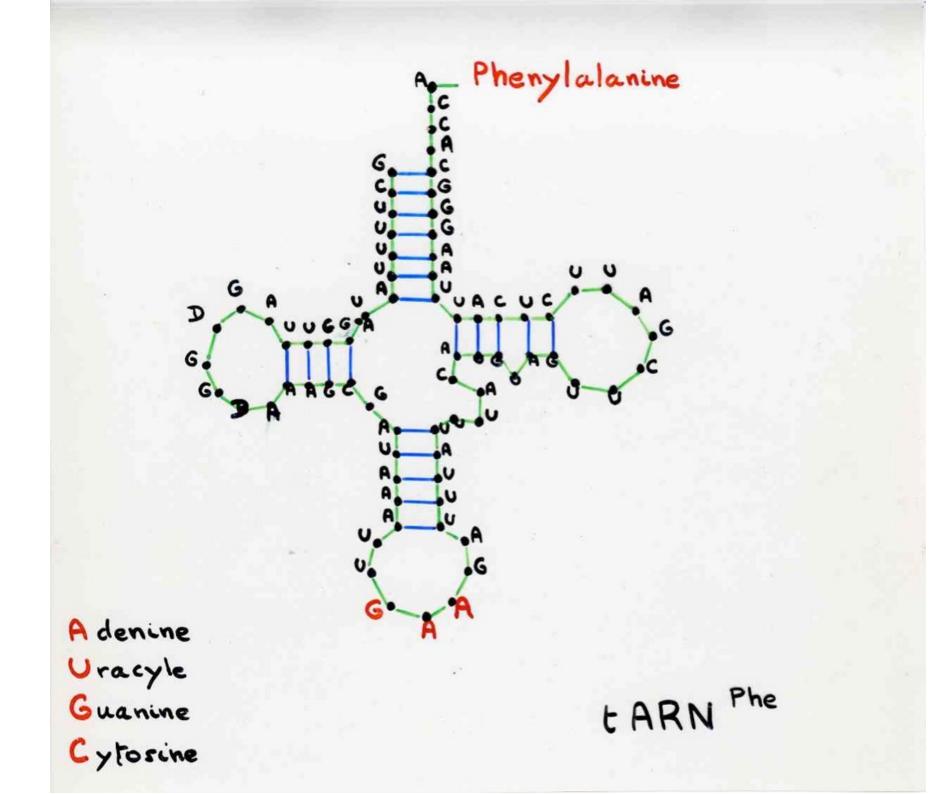
metamorphosis:

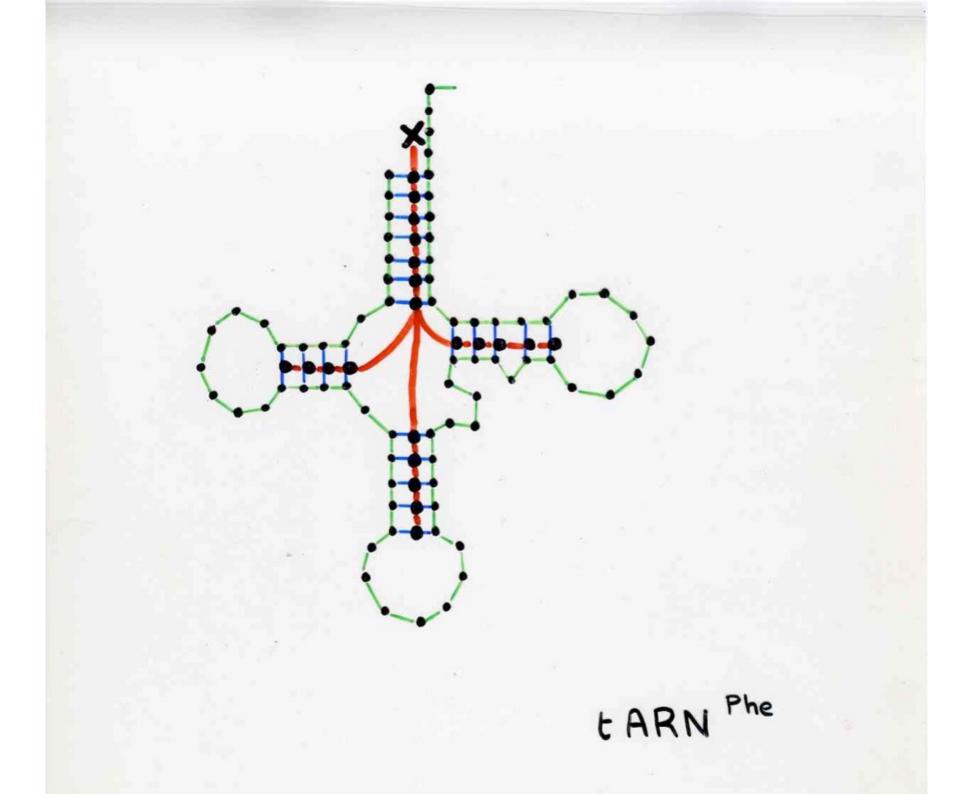
Euler triangulations binary trees Dyck paths heaps of dimers Lorentzian triangulations

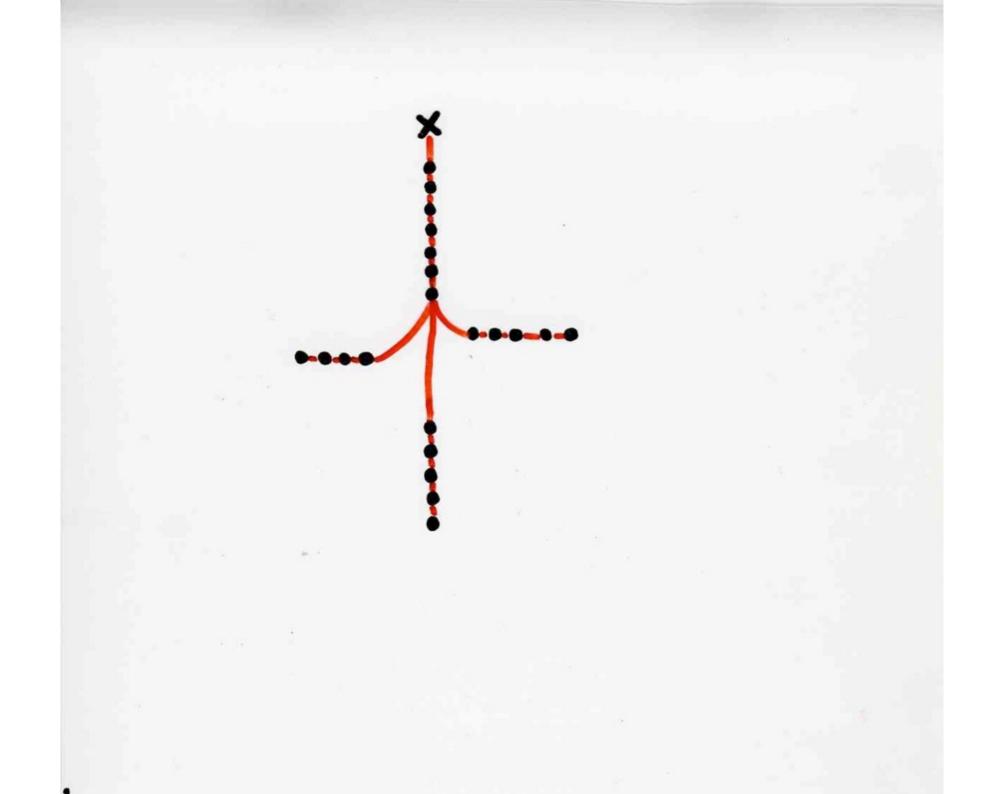


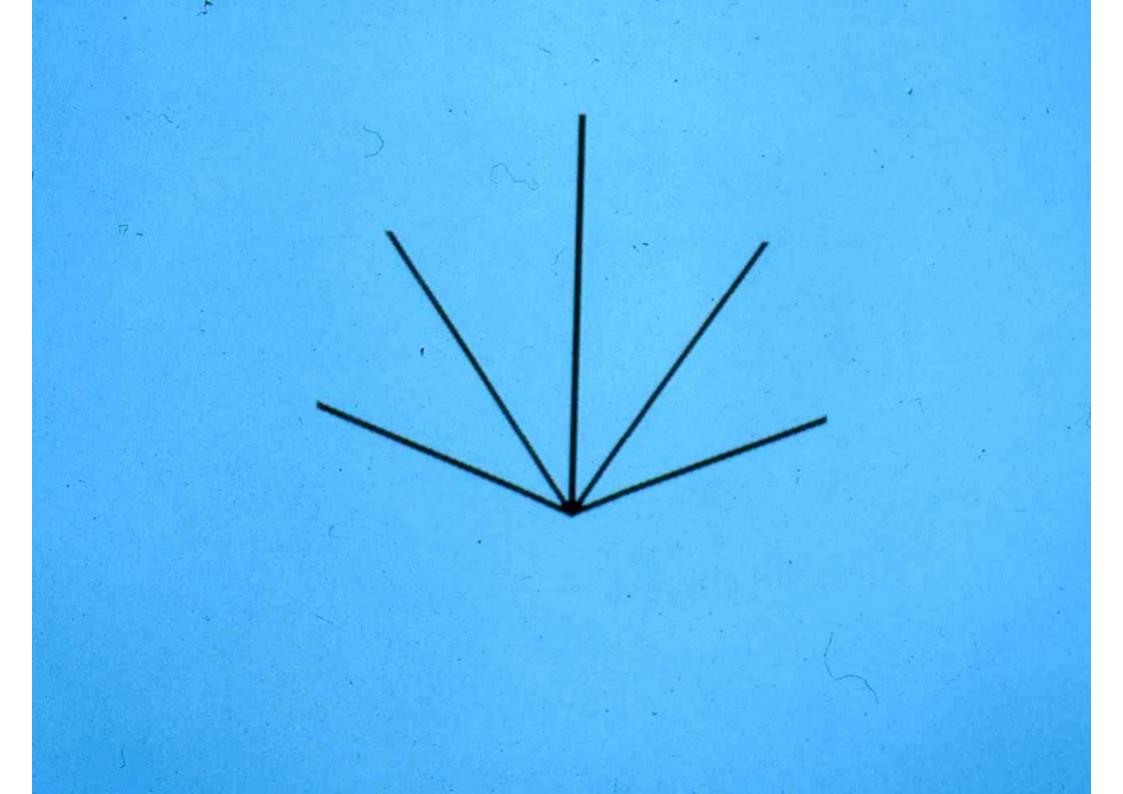


Trees everywhere











Il y a des arbres dans les étoiles, des arbres dans les grains de lumière.

There are trees in the stars trees in the particles of lights.

Les théories mathématiques s'interpellent, s'entrecroisent, renaissent, se fondent entre elles.

Mathematical theories call each other, intercross, are born again, merge in themselves.

> Les grands Maîtres se parlent à travers les siècles dans le jardin merveilleux des Mathématiques.

The great Masters talk each other through centuries in the wonderful garden of mathematics.

The end

thank you everyone

space-time text: Marcia Pig Lagos

violins: Gérard H.E. Duchamp Mariette Freudentheil

Association Cont'Science

realisation: Xavier Viennot

Many thanks to:

Space-Time text english traduction: Peter Scharf (University Paris Diderot

> CDEEP team Center for Distance Engineering Education Programme IIT Bombay, Powai, Mumbai, India

subtitles and video

videos: atelier audiovisuel Université Bordeaux 1 Yves Descubes, Franck Marmisse

video technical help: Christian Faurens, SCRIME, Université Bordeaux 1 France

Photo Gravitational Lens Galaxy cluster 0024+1654 credit: W.N.Colley, E.Turner (Princeton University), J.A. Tyson (Bell Labs) and NASA copyright: AURA Hubble Space Telescopoe Public Picture video: IIT Bombay, Institute colloquium, 19 Feb 2013

http://www.cdeep.iitb.ac.in/timeline/play_lecture.php?lno=x_viennot

www.xavierviennot.org

vulgarisation.xavierviennot.org

(popularization)

page: étudiants université

