Course IMSc Chennaí, Indía January-March 2017

Enumerative and algebraic combinatorics, a bijective approach: **commutations and heaps of pieces** (with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30

www.xavierviennot.org/coursIMSc2017

IMSc January-March 2017 Xavier Viennot CNRS, LaBRI, Bordeaux

www.xavierviennot.org

Chapter 7

Heaps in statistical mechanics (3) (slides: first part)

q-Bessel functions in physics

IMSc, Chennaí 16 March 2017

Bessel functions

Bessel functions

$$J_{\chi}(x) = \sum_{m} \frac{(-1)^{m}}{m! \Gamma(m+\chi+1)} \left(\frac{x}{2}\right)^{2m+\chi} \left(\frac{x}{2}\right)^{2m+\chi} \left(\frac{x}{2}\right)^{2m+\chi}$$

$$\Gamma(m) = (m-1)!$$

$$\frac{x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - \alpha)y = 0}{dx}$$

modified Bessel functions

$$I_{d}(z) = i J_{d}(ix)$$

9-analog

 $n! \rightarrow 1(1+q) \cdots (1+q+\cdots+q^{n-1})$

$$\frac{(1-q)(1-q^2)\cdots(1-q^n)}{(1-q)^n}$$

$$J_{0} = \sum_{n \geq 0} \frac{(-1)^{n} x^{n} q^{\binom{n+1}{2}}}{(q)_{n} (yq)_{n}}$$
$$J_{1} = \sum_{n \geq 1} \frac{(-1)^{n-1} x^{n} q^{\binom{n+1}{2}}}{(q)_{n-1} (yq)_{n}}$$
notation $(\alpha)_{n} = (1-\alpha)(1-\alpha q) \cdots (1-\alpha q^{n-1})$

from the previous lecture

Lorentzian triangulations in 2D qantum gravity

space Path integral amplitude for the propagation from geometry ly to la

generating function for pyramids of dimers with 4 parameters - t, V, y - x number of dimers in the last clumn

Catalan number $C_n = \frac{1}{(n+1)} {2n \choose n}$

Proposition

generating function for pyramids of dimens with 4 parameters - 5, V, y - x number of dimers

$$C = \frac{Q}{A-Q} + C \sum_{k>1} \frac{Q}{A-Q} \times \frac{k}{P_{k-1}} \frac{1}{F_{k-1}}$$

$$F_{n} = \frac{(A - Q^{n+d})}{(A - Q)(A + Q)^{n}}$$

$$(A + Q)^{n} = \frac{A}{F_{n}} \times (A + Q + \dots + Q^{n})$$

$$D^{n}$$

continuum limit In modified Bessel Junction

 $G_{\Lambda}(L_{1},L_{2};T) = \frac{e^{-(\omega H_{1}\sqrt{\Lambda}T)\sqrt{\Lambda}(L_{1}+L_{2})}}{sh\sqrt{\Lambda}T} \frac{\sqrt{\Lambda}L_{1}L_{2}}{L_{2}} \frac{I_{1}(\frac{2\sqrt{\Lambda}L_{1}L_{2}}{sh\sqrt{\Lambda}T})}{\sqrt{\Lambda}L_{1}L_{2}}$

Parallelogram polyomínoes (staírcase polygons)

and q-Bessel functions

M.Bousquet-Mélou, X.V. (1992)°

generating function $f(\mathbf{x},\mathbf{y};\mathbf{q}) = \sum a_{m,n,p} \mathbf{x}^{m} \mathbf{y}^{n} \mathbf{q}^{p}$ m,n,P c(P) r(P) d(P) $= \sum_{p} \infty n$ nb of of ns staircase area poly gons

parallelogram polyominoes (x length (ne of y height ("rows") 9 area Klarner, Rivest (1974) Bender $\frac{J_{1}(x,y,q)}{J_{2}(x,y,q)}$ Delest, Fedou (1989) Brak, Guttmann (1990) Bousquet-Meibu, X.V. (1990)

$$J_{0} = \sum_{n \geq 0} \frac{(-1)^{n} x^{n} q^{\binom{n+1}{2}}}{(q)_{n} (yq)_{n}}$$
$$J_{1} = \sum_{n \geq 1} \frac{(-1)^{n-1} x^{n} q^{\binom{n+1}{2}}}{(q)_{n-1} (yq)_{n}}$$
notation $(a)_{n} = (1-a)(1-aq)\cdots(1-aq^{n-1})$

bijetion parallelogram polyominoes semi-pyramids of segments

2 2

generating function

$$D = \sum_{F} (-1)^{|F|} \sqrt{(F)}$$

trivial heaps

$$N = \sum_{F} (-1)^{|F|} \sqrt{(F)}$$

trivial heaps
pieces $\notin M$

Segments V([i]] = q t u (i-i) $\mathcal{D} = \sum_{n \ge 0} \frac{(-1)^n \mathcal{E}^n q^n q^{\binom{n}{2}}}{(1-q)\cdots(1-q^n)(1-uq)\cdots(1-uq^n)}$ $\mathcal{D} = \sum_{i=1}^{n} \sqrt{2}$ (q-Bessel) configuration configuration 2 ly 2 disjoint segments V(G) = TT v(each segment)

from integers partitions

to q-Bessel functions

$$N = u \sum_{n \ge 1} \frac{(-1)^{n-1} t^n q^n q^{\binom{n}{2}}}{(1-q) \cdot (1-q^n) (1-uq) \cdots (1-uq)}$$

$$q_{j} u^{(j-1)} t$$

random parallelogram polyomínoes

The Catalan garden

A festival of bijections

other description of the bijection:

1. with the stairs decomposition of a heap of dimers

staircase polygons Dyck paths

Ch 2a (IMSc 2016) P110-116

The Catalan garden

bijections

staírcase polygons Dyck paths

$\frac{\text{path }\omega}{\text{on }\chi} \xrightarrow{\chi} (\eta, E)$

semi-pyramids of dimers

violin: G. Duchamp

staircase polygons Dyck paths semi-pyramids of dimers stair decomposition

Ch6a, P 50

staircase polygons Dyck paths semí-pyramids of dímers stair decomposition Ch6a, p 50 semi-pyramids of segments Ch6a, p 55

a festival of bijections parallelogram polyominoes (stair case Polygons) stairs decomposition semi-pyramids of dimers (on IN) semi-pyramids Con N) Lyck. paths

other description of the bijection:

2. with Lukasiewicz paths

Lukasiewicz path w = (so, -, sn) so=(0,0), sn=(n,0) elementary step $S_i=(x_i, y_i)$ $S_{i+1}=(x_{i+1}, y_{i+1})$ $x_{i+1}=1+x_i$ with $y_{i+1} \ge y_i-1$

Ch2a, course 2016, p 60-63

bijection Ch 2a (IMSc 2016) P60 Dyck paths The Catalan Lukasiewicz paths garden

(reverse) Lukasiewicz paths

(reverse) Lukasiewicz paths

bijections

staírcase polygons Dyck paths (reverse) Lukasíewícz paths

bijections

staircase polygons Dyck paths Lukasiewicz paths

$\frac{\text{path }\omega}{\text{on }\chi} \xrightarrow{\chi} (\gamma, E)$

semí-pyramíds of segments

 $\frac{\text{Path }\omega}{\text{on }X} \xrightarrow{\times} (\eta, E)$

parallelogram a festival of bijections polyominoes (stair case Polygons) stairs decomposition semi-pyramids of dimers (on IN) semi-pyramids segments (on (reverse) kasie wicz Lyck. paths paths exercise Ch 6a, p 59

other description of the bijection:

3. with the bijection (paths — heaps of oriented loops)

(7,F)

Ch 56, p21-29 w-

bijections

staircase polygons Dyck paths $\omega + (\gamma, F)$ (h5b, p²¹⁻²⁹

heaps of oriented loops


~~~(7,F)











































parallelogram a festival of bijections polyominoes (stair case Polygons) stairs decomposition semi-pyramids of dimers (on IN) semi-pyramids segments (on N) (reverse) Lukasiewicz Lyck. paths paths heaps of oriented loops + trail exercise Ch6a, 765

